Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) VT = a3 - 3a2b + 3ab2 - b3 + a3 + 3a2b + 3ab2 + b3
= 2a3 + 6ab2 = 2a( a2 + 3b2 ) = VP ( đpcm )
b) VP = (-a)2 - 2(-a)b + b2 = a2 + 2ab + b2 = ( a + b )2 = VT ( đpcm )
c) VP = ( a + b )3 = VT ( đpcm )
d) VP = b2 - 2ab + a2 = a2 - 2ab + b2 = ( a - b )2 = VT ( đpcm )
e) VP = ( a - b )3 = VT ( đpcm )
i) VT = a2 + 2ab + b2 + a2 - 2ab + b2 = 2a2 + 2b2 = 2( a2 + b2 ) = VP ( đpcm )
h) ( a + b + c )2 + ( a + b - c )2 + ( c + a - b )2 + ( b + c - a )2
= [ ( a + b ) + c ]2 + [ ( a + b ) - c ]2 + [ ( c + a ) - b ]2 + [ ( b + c ) - a ]2
= ( a2 + b2 + c2 + 2ab + 2bc + 2ca ) + ( a2 + b2 + c2 + 2ab - 2bc - 2ca ) + ( a2 + b2 + c2 - 2ab - 2bc + 2ca ) + ( a2 + b2 + c2 - 2ab + 2bc - 2ca ) ( Chỗ này bạn khai triển các ngoặc ra nhé )
= 4a2 + 4b2 + 4c2 = 4( a2 + b2 + c2 ) = VP ( đpcm )
g) VP = a2x2 + a2y2 + b2x2 + b2y2 - ( a2y2 - 2axby + b2x2 )
= a2x2 + a2y2 + b2x2 + b2y2 - a2y2 + 2axby - b2x2
= a2x2 + 2axby + b2y2
= ( ax + by )2 = VT ( đpcm )
Không hiểu chỗ nào thì ib nhé :D
c) \(VT=\left(a+b+c\right)^3-a^3-b^3-c^3\)
\(=\left(a+b\right)^3+3c\left(a+b\right)\left(a+b+c\right)+c^3-a^3-b^3-c^3\)
\(=a^3+b^3+c^3+3ab\left(a+b\right)+3c\left(a+b\right)\left(a+b+c\right)-a^3-b^3-c^3\)
\(=3\left(a+b\right)\left[ab+c\left(a+b+c\right)\right]\)
\(=3\left(a+b\right)\left(ab+ac+bc+c^2\right)\)
\(=3\left(a+b\right)\left(b+c\right)\left(c+a\right)=VP\)
d) \(VT=a^3+b^3+c^3-3abc\)
\(=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)
\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=VP\)
I don't now
...............
.................
nhìn zậy thoy chứ dễ lắm mik làm vd 2 bài còn lại bn làm có gì bí thì hỏi mik
a) biến đổi vế trái ta có : \(\left(x+y\right)^2-y^2=\left(x+y-y\right)\left(x+y+y\right)=x\left(x+2y\right)\)( = vế phải )
b) BĐVT ta có : \(\left(x^2+y^2\right)^2-\left(2xy\right)^2=\left(x^2+y^2-2xy\right)\left(x^2+y^2+2xy\right)=\left(x-y\right)^2\left(x+y\right)^2\)= VP
Có: a3 + b3+ c3- 3abc
= (a+b)3- 3a2b - 3ab2- 3abc + c3
=(a+b)3 +c3 - 3ab.(a+b+c)
=(a + b + c). [(a+b)2 - (a+b).c+c2) - 3ab.(a+b+c)
=(a + b + c). ( a2 + 2ab + b2 - ac - bc + c2 - 3ab.(a + b + c)
=(a + b + c). ( a2 + 2ab + b2 - ac - bc + c2 -3ab)
=(a + b + c).( a2 + b2 + c2 - ab - bc - ca)
=>đpcm
chúc bạn học tốt
xét VT = \(a^3+b^3+c^3-3abc\)
nhận xét \(\left(a+b\right)^3=a^3+b^3+3a^2b+3ab^2\)
\(\Rightarrow a^3+b^3=\left(a+b\right)^3-3a^2b-3ab^2\)
thay vào vế trái ta có
\(\left(a+b\right)^3+c^3-3a^2b-3ab^2-3abc\)
\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ac-bc-ab\right)=VP\left(dpcm\right)\)
a) \(\left(x+a\right)\left(x+b\right)\left(x+c\right)\)
\(=\left[x^2+\left(a+b\right)x+ab\right]\left(x+c\right)\)
\(=x^3+\left(a+b+c\right)x^2+\left(ab+bc+ca\right)x+abc\)
b) \(a^3+b^3+c^3-3abc\)
\(=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)
\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ca-bc+c^2-3ab\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
c) \(a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)\)
\(=a^2\left(b-c\right)+b^2c-ab^2+c^2a-bc^2\)
\(=a^2\left(b-c\right)+bc\left(b-c\right)-a\left(b-c\right)\left(b+c\right)\)
\(=\left(b-c\right)\left(a^2+bc-ab-ca\right)\)
\(=\left(a-b\right)\left(b-c\right)\left(c-a\right)\)
Nhầm đoạn cuối là \(=\left(a-b\right)\left(b-c\right)\left(a-c\right)\)