Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ( a + b - ( b - a ) ) + c = a + b - b + a + c = ( a + a ) + ( b - b ) + 2 = 2a + 2 ( đpcm )
b) -( a + b - c ) + ( a - b - c ) = -a - b + c + a - b - c = ( -a + a ) + ( -b - b ) + ( c - c ) = -2b ( đpcm )
c) * Suy nghĩ các thứ *
a(b+c)-[a(-b-d)]=-a(bc-d)
\(VT=a\left(b+c\right)-\left[a\left(-b-d\right)\right]=ab+ac-\left[-ab-ad\right]\)\(ab+ac+ab+ad=2ab+ac+ad\)
\(VP=a\left(bc-d\right)=-abc+ad\)
2 đẳng thức này sau khi rút gọn không = nhau
=> 2 đẳng thức này k bằng nhau
( a + b ) _ ( b _ a ) + c = 2a + c
\(a+b-b+a+c=2a+c\)
\(\left(a+a\right)+\left(b-b\right)+c=2a+c\)
\(2a+0+c=2a+c\)
\(2a+c=2a+c\Rightarrowđpcm\)
- ( a + b _ c ) + ( a _ b _c ) = - 2b
\(-a-b+c+a-b-c=-2b\)
\(\left(-a+a\right)+\left(-b-b\right)+\left(c-c\right)=-2b\)
\(0-2b+0=-2b\)
\(-2b=-2b\Rightarrowđpcm\)
a nhân ( b+ c ) _ a nhân ( b + d ) = a nhân ( c _ d )
\(ab+ac-ab+ad=a.\left(c-d\right)\)
\(a.\left(b+c-b+d\right)=a.\left(c-d\right)\)
\(a.\left(c-d\right)=a.\left(c-d\right)\Rightarrowđpcm\)
a nhân ( b _ c ) + a nhân ( d + c ) = a nhân ( b + d )
\(ab-ac+ad+ac=a.\left(b+d\right)\)
\(a.\left(b-c+d+c\right)=a.\left(b+d\right)\)
\(a.\left(b+d\right)=a.\left(b+d\right)\)
chúc bạn học tốt!!!
( a _ b + c ) _ ( a+ c ) = - b
\(a-b-c-a-=-b\)
\(\left(a-a\right)-c-b=-b\)
\(0-c-b=-b\)
\(-b=-b\Rightarrowđpcm\)
a, (a-b) + (c+d)
= a-b + c+d
= (a+c) - (b-d)
=> (a-b) + (c+d) = (a+c) - (b-d)
b, (a-b) - (a-d)
= a-b - a + d
= (a+d) - (b-d)
=> (a-b) - (a-d) = (a+d) - (b-d)
\(a)\) \(\left(a-b\right)+\left(c+d\right)\)
\(=\)\(a-b+c+d\)
\(=\)\(\left(a+c\right)+\left(-b+d\right)\)
\(=\)\(\left(a+c\right)-\left(b-d\right)\)
Vậy ...
\(b)\) \(\left(a-b\right)-\left(c-d\right)\)
\(=\)\(a-b-c+d\)
\(=\)\(\left(a+d\right)+\left(-b-c\right)\)
\(=\)\(\left(a+d\right)-\left(b+c\right)\)
Vậy ...
Theo t/c dãy tỉ số=nhau:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
\(=>a=b;b=c;c=a=>a=b=c\left(đpcm\right)\)
vì a,b,c là các số chính phương nên a,b,c sẽ thuộc dạng 3k, 3k+1 hoặc 4k,4k+1
* nếu a = 3k, b = 3h+1,c = 3n hoặc 4k, 4h+1, 4n
=> c - a chia hết cho 3 và 4
Mà [3,4] = 1
=> [a-b][b-c][c-a] chia hết cho 12
* nếu a = 3k, b = 3h+1,c = 3n+1 hoặc 4k, 4h+1, 4n+1
=> b - c chia hết cho 3 và 4
=> [a-b][b-c][c-a] chia hết cho 12
* nếu a = 3k, b = 3h,c = 3n+1 hoặc 4k, 4h, 4n+1
=> a-b chia hết cho 3 và 4
=> [a-b][b-c][c-a] chia hết cho 12
và với một số trường hợp khác, a - b, b-c hoặc c-a sẽ chia hết cho 3 và 4
Vậy [a-b][b-c][c-a] chia hết cho 12 với a,b,c là các scp
trong 4 số abcd có ít nhất 2 số cùng số dư khi chia cho 3
trong 4 số abcd nếu có 2 số cùng số dư khi chia cho 4 thì hiệu 2 số đó sẽ chia hết cho 4
nếu 0 thi 4 số dư theo thứ tự 0.1.2.3 \(\Leftrightarrow\)trong bốn số abcd có 2 số chẵn 2 số lẻ
hiệu của hai số chẵng và 2 số lẻ trong 4 số đó chia hết cho 2
=>tích trên chia 3 và 4
Có: A+B = a + b - 5 - b - c + 1 = a - c - 4
C - D = b - c - 4 - b + a = a - c - 4
=> A + B = C - C ( = a - c -4)
A + B = a + b - 5 + ( - b - c + 1)= a + b - 5 - b - c + 1 = a - c - 4 (1)
C - D = b - c - 4 - (b - a) = b - c - 4 - b + a = - c - 4 + a = a - c - 4 (2)
(1) và (2) => A + B = C - D
Tính ra thôi
a ) ( -a + c - b ) - ( c -a + b )
= ( -a + c - b ) - c + a - b
= ( -a + a ) + ( c - c ) - b - b
= 0 + 0 -2b
= -2b ( đpcm )
b ) a.( b + c ) - b. (a -c )
= ab + ac - ab + bc
= ( ab - ab ) + ac + bc
= ac + bc
= ( a + b ) .c ( đpcm )
a) VT=(-a+c-b)-(c-a+b)=-a+c-b-c+a-b
VP=-2b
\(\Rightarrow\)VT=VP\(\Rightarrow\)(-A+C-B)-(C-A+B)=-2B
b) VT = a( b+ c) - b(a - c)= ab+ac-ab+bc=ac+bc=c(a+b)=VP(đpcm)
thnk you nha mình cũng chúc bạn có một năm mới luôn vui vẻ hạnh phúc đầm ấm bên gia đình.