Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Gọi d = ƯCLN(2n+5; 3n+7) (d thuộc N*)
=> 2n + 5 chia hết cho d; 3n + 7 chia hết cho d
=> 3.(2n + 5) chia hết cho d; 2.(3n + 7) chia hết cho d
=> 6n + 15 chia hết cho d; 6n + 14 chia hết cho d
=> (6n + 15) - (6n + 14) chia hết cho d
=> 6n + 15 - 6n - 14 chia hết cho d
=> 1 chia hết cho d
Mà d thuộc N* => d = 1
=> ƯCLN(2n+5; 3n+7) = 1
=> 2n + 5 và 3n + 7 là 2 số nguyên tố cùng nhau (đpcm)
Câu b lm tương tự
Gọi d = ƯCLN(2n+5; 3n+7) (d thuộc N*)
=> 2n + 5 chia hết cho d; 3n + 7 chia hết cho d
=> 3.(2n + 5) chia hết cho d; 2.(3n + 7) chia hết cho d
=> 6n + 15 chia hết cho d; 6n + 14 chia hết cho d
=> (6n + 15) - (6n + 14) chia hết cho d
=> 6n + 15 - 6n - 14 chia hết cho d
=> 1 chia hết cho d
Mà d thuộc N* => d = 1
=> ƯCLN(2n+5; 3n+7) = 1
=> 2n + 5 và 3n + 7 là 2 số nguyên tố cùng nhau (đpcm)
Câu b lm tương tự
Gọi d là ƯCLN (2n + 5 ; 3n + 7)
Ta có: 2n + 5 chia hết cho d ; 3n + 7 chia hết cho d
=> 3(2n + 5) chia hết cho d ; 2(3n + 7) chia hết cho d
=> 3(2n + 5) - 2(3n + 7) chia hết cho d
=> 6n + 15 - 6n - 14 chia hết cho d
=> 1 chia hết cho d
2n + 5 và 3n + 7 có ƯCLN là 1, vậy 2n + 5 và 3n + 7 là hai số nguyên tố cùng nhau.
Gọi d là ƯCLN (2n + 5 ; 3n + 7)
Ta có: 2n + 5 chia hết cho d ; 3n + 7 chia hết cho d
=> 3(2n + 5) chia hết cho d ; 2(3n + 7) chia hết cho d
=> 3(2n + 5) - 2(3n + 7) chia hết cho d
=> 6n + 15 - 6n - 14 chia hết cho d
=> 1 chia hết cho d
2n + 5 và 3n + 7 có ƯCLN là 1, vậy 2n + 5 và 3n + 7 là hai số nguyên tố cùng nhau.
a)Giải: Gọi hai số lẻ liên tiếp là 2n + 1 và 2n + 3 (n \(\in\) N).
Ta đặt ƯCLN (2n + 1, 2n + 3) = d.
Suy ra 2n + 1chia hết cho d; 2n + 3 chia hết cho d.
Vậy (2n + 3) – ( 2n + 1) chia hết cho d
Hay 2 chia hết cho d, suy ra d \(\in\) { 1 ; 2 }. Nhưng d \(\ne\) 2 vì d là ước của các số lẻ. Vậy d = 1, điều đó chứng tỏ 2n + 1 và 2n + 3 là hai số nguyên tố cùng nhau.
Ta có : k là ƯCLN của 7n + 10 và 5n + 7
Vậy : 7n + 10 chia hết cho k ; 5n + 7 chia hết cho k
Hay 5(7n + 10 ) và 7(5n + 7 )
35n + 50 và 35n + 49 chia hết cho k
=> ĐPCM
Hai bài kia bạn làm tương tư nhé , chúc may mắn
a)Vì hai số tự nhiên liên tiếp có UC là 1 nên =>Hai số tự nhiên lien tiếp khác 0 là hai số nguyên tố cùng nhau
b)Vì hai số tự nhiên liên tiếp có UC là 1 nên =>Hai số tự nhiên lien tiếp là hai số nguyên tố cùng nhau
tick nha
a) 2 số có dạng: 2k +1 ; 2k + 3
UC(2k + 1 ; 2k + 3) = UC(1;3) = 1
=> dpcm
b) Gọi UCLN(2n + 5 ;3n + 7) = d
2n + 5 chia hết cho d
=> 6n + 15 chia hết cho d
3n + 7 chia hết cho d
=> 6n + 14 chia hết cho d
Mà UCLN(6n + 14 ; 6n + 15) = 1 <=> d = 1
=> DPCM
a, Ta phải chứng minh ƯCLN(2n+1 ; 2n+3)=1
đặt : ƯCLN(2n+1;2n+3)=d
Suy ra : 2n+1 chia hết cho d
2n+3 chia hết cho d
Nên (2n+3) - (2n+1) chia hết cho d Hay 2 chia hết cho d
=> d thuộc Ư(2)={1;2}
loại d=2 (vì d khác 2)
=> d = 1
Vậy 2 số tự nhiên lẻ liên tiếp nhau là 2 số nguyên tố cùng nhau
b, Gọi ƯCLN ( 2n+5 ; 3n+7)=p
Suy ra : 2n+5 chia hết cho p Hay 3.(2n+5)=6n+15 chia hết cho p
3n+7 chia hết cho p Hay 2.(3n+7)=6n+14 chia hết cho p
Nên : (6n+15) - (6n+14) chia hết cho p hay 1chia hết cho p
=>p= 1
vậỷ 2n+5 và 3n+7 là 2 số nguyên tố cùng nhau
a) Gọi d là ƯCLN (n;n+1) (\(d\inℕ^∗\))
\(\Rightarrow\hept{\begin{cases}n⋮d\\n+1⋮d\end{cases}\Rightarrow n+1-n⋮d\Rightarrow1⋮d}\)
Mà \(d\inℕ^∗\)=> d=1 => ƯCLN (n;n+1)=1
=> n; n+1 nguyên tố cùng nhau với \(n\inℕ\)(đpcm)
b) Gọi d là ƯCLN (n+1; 3n+4) \(\left(d\inℕ^∗\right)\)
\(\Rightarrow\hept{\begin{cases}n+1⋮d\\3n+4⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(n+1\right)⋮d\\3n+4⋮d\end{cases}\Rightarrow}\hept{\begin{cases}3n+3⋮d\\3n+4⋮d\end{cases}}}\)
=> (3n+4)-(3n+3) chia hết cho d
=> 1 chia hết cho d. Mà d thuộc N*
=> d=1
=> ƯCLN (n+1; 3n+4)=1
=> n+1 và 3n+4 nguyên tố cùng nhau với \(n\inℕ\)
c) Gọi d là ƯCLN (2n+1;3n+2) \(\left(d\inℕ^∗\right)\)
\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\3n+2⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(2n+1\right)⋮d\\2\left(3n+2\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}6n+3⋮d\\6n+4⋮d\end{cases}}}\)
=> (6n+4)-(6n+3) chia hết cho d
=> 1 chia hết cho d. Mà d thuộc N*
=> d=1 => ƯCLN (2n+1; 3n+2)=1
=> 2n+1; 3n+2 nguyên tố cùng nhau với n\(\in\)N
a)Ta có: n+1 và 3n +4
Gọi d là ƯCLN ( n+1;3n+4)
Ta có n+1 chia hết cho d và 3n+4 cũng chia hết cho d.
(3n+4)-(3n+3) = 1 chia hết cho d
Vậy hai số n+1 và 3n+4 là hai số nguyên rố cùng nhau.
b) Ta có: 2n+5 và 3n+7
Gọi d là ƯCLN(2n+5;3n+7)
Ta có 2n+5 chia hết cho d và 3n+7 cũng chia hết cho d
( 6n+15) - (6n +14) = 1 chia hết cho d
Vậy hai số 2n+5 và 3n+7 là hai số nguyên tố cùng nhau.
trong câu hỏi tương tự ý đầy