K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 2 2016

bạn làm xong bài này chưa dạy mình với

4 tháng 4 2016

giup giai cau nay voi

5 tháng 8 2016

\(B=\left(1-\frac{1}{4}\right)+\left(1-\frac{1}{9}\right)+...+\left(1-\frac{1}{2500}\right)\)

\(B=\left(1-\frac{1}{2^2}\right)+\left(1-\frac{1}{3^2}\right)+...+\left(1-\frac{1}{50^2}\right)\)

\(B=1+1+...+1-\frac{1}{2^2}-\frac{1}{3^2}-...-\frac{1}{50^2}\)

\(B=49-\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)\)

vì \(\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)< 1\)

nên B>A

2 tháng 4 2017

A là số nào vậy bạn giải thích rõ giùm

22 tháng 2 2016

\(=\frac{2\cdot4}{3^2}\cdot\frac{3.5}{4^2}\cdot\frac{4\cdot6}{5^2}\cdot......\cdot\frac{49\cdot51}{50^2}\)

=\(\frac{\left[2\cdot3\cdot4\cdot......\cdot49\right]\cdot\left[4\cdot5\cdot6\cdot.....\cdot51\right]}{\left[3\cdot4\cdot5\cdot....\cdot50\right]\cdot\left[3\cdot4\cdot5\cdot....\cdot50\right]}\)

=\(\frac{2\cdot51}{50\cdot3}\)

=\(\frac{17}{25}\)

Vì \(\frac{17}{25}\) ko phải là số nguyên nên B ko phải là số nguyên [ĐPCM]

NV
5 tháng 3 2019

\(B=\frac{2^2-1}{2^2}+\frac{3^2-1}{3^2}+...+\frac{50^2-1}{50^2}\)

\(B=1-\frac{1}{2^2}+1-\frac{1}{3^2}+...+1-\frac{1}{50^2}\)

\(B=49-\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)=49-A< 49\)

Mặt khác ta có:

\(A=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)

\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)

\(\Rightarrow A< 1-\frac{1}{50}< 1\)

\(\Rightarrow B=49-A>49-1=48\)

\(\Rightarrow48< B< 49\)

\(\Rightarrow\) B nằm giữa 2 số nguyên liên tiếp nên B không phải là số nguyên

5 tháng 3 2019

\(B=1-\frac{1}{4}+1-\frac{1}{9}+1-\frac{1}{16}+...+\frac{1}{2500}\)

\(B=1-\frac{1}{2^2}+1-\frac{1}{3^2}+1-\frac{1}{4^2}+...+\frac{1}{50^2}=\left(1+1+...+1\right)-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}...+\frac{1}{50^2}\right)\)(từ 2 đến 50 có 49 số nên có 49 số 1)

\(B=49-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}...+\frac{1}{50^2}\right)<49\) (1)

Nhận xét: \(\frac{1}{2^2}<\frac{1}{1.2};\frac{1}{3^2}<\frac{1}{2.3};\frac{1}{4^2}<\frac{1}{3.4};...;\frac{1}{50^2}<\frac{1}{49.50}\)

=> \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}...+\frac{1}{50^2}<\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+..+\frac{1}{49}-\frac{1}{50}=1-\frac{1}{50}<1\) => \(-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}...+\frac{1}{50^2}\right)>-1\)

=> \(B=49-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}...+\frac{1}{50^2}\right)>49-1=48\)(2)

Từ (1)(2) => 48 < B < 49 => B không phải là số nguyêm

22 tháng 3 2020

\(B=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+\frac{24}{25}+........+\frac{n^2-1}{n^2}\)

\(=\left(1-\frac{1}{4}\right)+\left(1-\frac{1}{9}\right)+\left(1-\frac{1}{16}\right)+.......+\left(1-\frac{1}{n^2}\right)\)

\(=1-\frac{1}{4}+1-\frac{1}{9}+1-\frac{1}{16}+.......+1-\frac{1}{n^2}\)

\(=\left(1+1+1+......+1\right)-\left(\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+..........+\frac{1}{n^2}\right)\)

\(=\left(n-1\right)-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.......+\frac{1}{n^2}\right)\)

Vì \(2^2=2.2>1.2\)\(\Rightarrow\frac{1}{2^2}< \frac{1}{1.2}\)

Tương tự ta có: \(\frac{1}{3^2}< \frac{1}{2.3}\)\(\frac{1}{4^2}< \frac{1}{3.4}\); .......... ; \(\frac{1}{n^2}< \frac{1}{\left(n-1\right)n}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.......+\frac{1}{n^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.......+\frac{1}{\left(n-1\right)n}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.......+\frac{1}{n-1}-\frac{1}{n}\)

\(=1-\frac{1}{n}< 1\)

mà \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.........+\frac{1}{n^2}>0\)( vì các số hạng luôn > 0 )

\(\Rightarrow0< \frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+........+\frac{1}{n^2}< 1\)\(\Rightarrow\)\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.........+\frac{1}{n^2}\)không là số nguyên (1)

mà \(n\inℤ\)\(\Rightarrow n-1\inℤ\)(2)

Từ (1) và (2) \(\Rightarrow\)B không là số nguyên (đpcm)

2 tháng 11 2017


\(a,\frac{-8}{15}.\left(-30\right).\frac{15}{-8}.\frac{9}{10}\)
\(=-\left(\frac{8}{15}.\frac{15}{8}\right).\left(30.\frac{9}{10}\right)\)
\(=-1.27 =-27\)
\(b,2\frac{1}{18}.\frac{23}{24}.\frac{9}{37}.\frac{48}{-15}\)
\(=\frac{-37.23.9.48}{18.24.37.15}=\frac{23}{15}\)
c, chịu rồi
 

2 tháng 11 2017

cảm ơn bạn nhé Ghost River