Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(\left|a\right|>0\)
\(\Leftrightarrow a^2>0\)
\(\Leftrightarrow-a^2< 0\)
\(\Leftrightarrow n^2-a^2< n^2\)
\(\Leftrightarrow\sqrt{n^2-a^2}< \sqrt{n^2}\)(\(n\ge a\Leftrightarrow n^2\ge a^2\Leftrightarrow n^2-a^2\ge0\))
\(\Leftrightarrow\sqrt{n^2-a^2}< n\)
\(\Leftrightarrow2\sqrt{n^2-a^2}< 2n\)
\(\Leftrightarrow\left(n+a\right)+\left(n-a\right)+2\sqrt{\left(n+a\right)\left(n-a\right)}< 2n+n+a+n-a\)
\(\Leftrightarrow\left(\sqrt{n+a}+\sqrt{n-a}\right)^2< 4n\)
\(\Leftrightarrow\sqrt{n+a}+\sqrt{n-a}< 2\sqrt{n}\)
Cách khác:
Với x,y \(\ge\)0 luôn có: \(x+y\le\sqrt{2\left(x^2+y^2\right)}\) (1)
Thật vậy (1) <=> \(x^2+y^2+2xy\le2\left(x^2+y^2\right)\)
<=>\(0\le x^2-2xy+y^2=\left(x-y\right)^2\) (luôn đúng)
Dấu "=" xảy ra <=> x=y\(\ge0\)
Do \(0\le\left|a\right|\le n\) => \(n-a\ge0\) ( khi cả a âm hay a dương)
Áp dụng bđt (1) có: \(\sqrt{n+a}+\sqrt{n-a}\le\sqrt{2\left(n+a+n-a\right)}\)=\(\sqrt{2.2n}=2\sqrt{n}\)
Dấu "=" xảy ra <=> \(n+a=n-a\) <=> 2a=0 <=> a=0( không thỏa mãn đk)
=> Dấu "=" không xảy ra
Vậy \(\sqrt{n+a}+\sqrt{n-a}< 2\sqrt{n}\)
P/s : không phải lúc nào cũng có thể làm giống NK hoặc cách mình nên bạn hãy tham khảo
a, Đặt \(\sqrt[4]{a}=x;\sqrt[4]{b}=y.\)Bất đẳng thức ban đầu trở thành: \(\frac{2x^2y^2}{x^2+y^2}\le xy.\)
ta có : \(x^2+y^2\ge2xy\Rightarrow\frac{2x^2y^2}{x^2+y^2}\le\frac{2x^2y^2}{2xy}=xy.\)(đpcm )
dấu " = " xẩy ra khi x = y > 0
vậy bất đăng thức ban đầu đúng. dấu " = " xẩy ra khi a = b >0
Mình học lớp 6 nên chẳng may có gì sai bạn(chị anh) sửa giúp em nhé:
Ta có:
\(\left(\sqrt{n+a}+\sqrt{n-a}\right)^2< \left(2\sqrt{n}\right)^2\) (bình phương cả 2 vế)
=> \(2n+2\sqrt{n^2-a^2}< 4n\)
=>\(2\sqrt{n^2-a^2}< 2n\)
=>\(\sqrt{n^2-a^2}< n\)
=>n2 - a2 < n2 (bình phương cả 2 vế)
Vì |a|>0
=>a2 > 0
=> n2-a2 < n2
Vậy \(\sqrt{n+a}+\sqrt{n-a}< 2\sqrt{n}\)
câu b làm tương tự nhé:
\(\left(a\right)\frac{2\sqrt{15}-2\sqrt{10}+\sqrt{6}-3}{2\sqrt{5}-2\sqrt{10}-\sqrt{3}+\sqrt{6}}\\ =\frac{2\sqrt{5}\left(\sqrt{3}-\sqrt{2}\right)+\sqrt{3}\left(\sqrt{2}-\sqrt{3}\right)}{2\sqrt{5}\left(1-\sqrt{2}\right)-\sqrt{3}+\sqrt{6}}\\ =\frac{2\sqrt{5}\left(\sqrt{3}-\sqrt{2}\right)-\sqrt{3}\left(\sqrt{3}-\sqrt{2}\right)}{2\sqrt{5}\left(1-\sqrt{2}\right)-\sqrt{3}\left(1-\sqrt{2}\right)}\\ =\frac{\left(2\sqrt{5}-\sqrt{3}\right)\left(\sqrt{3}-\sqrt{2}\right)}{\left(2\sqrt{5}-\sqrt{3}\right)\left(1-\sqrt{2}\right)}\\ =\frac{\sqrt{3}-\sqrt{2}}{1-\sqrt{2}}\)
\(\left(b\right) \frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\\ =\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+2}\\ =\frac{\sqrt{2}+\sqrt{3}+2+2+\sqrt{6}+\sqrt{8}}{\sqrt{2}+\sqrt{3}+2}\\ =\frac{\left(\sqrt{2}+\sqrt{3}+2\right)+\left(\sqrt{2}.\sqrt{2}+\sqrt{2}.\sqrt{3}+\sqrt{2}.2\right)}{\sqrt{2}+\sqrt{3}+2}\\=\frac{\left(\sqrt{2}+\sqrt{3}+2\right)+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+2\right)}{\sqrt{2}+\sqrt{3}+2}\\ =\frac{\left(\sqrt{2}+\sqrt{3}+2\right)\left(1+\sqrt{2}\right)}{\sqrt{2}+\sqrt{3}+2}\\ =1+\sqrt{2}\)
\(\left(c\right)\sqrt{9\left(3-a\right)^2}vớia>3\\ =\sqrt{9}.\sqrt{\left(3-a\right)^2}\\ =3.\left|3-a\right|\\ =-3\left(3-a\right)vì.a>3\\ =3a-9\)
\(\left(d\right)\sqrt{a^2.\left(a-2\right)^2}vớia< 0\\ =\sqrt{\left[a\left(a-2\right)\right]^2}\\ =\left|a\left(a-2\right)\right|=-a.\left[-\left(a-2\right)\right]=a\left(a-2\right)=a^2-2a\)
Chúc bạn học tốt !
Với a; b dương chứ nhỉ, nằm dưới mẫu thêm điều kiện khác 0, mà không âm + khác 0 thì nó là dương còn gì?
\(\Leftrightarrow\sqrt[3]{\frac{a}{b}}+\sqrt[3]{\frac{b}{a}}\le\sqrt[3]{2\left(\frac{a}{b}+\frac{b}{a}+2\right)}\)
\(\Leftrightarrow\left(\sqrt[3]{\frac{a}{b}}+\sqrt[3]{\frac{b}{a}}\right)^3\le2\left(\frac{a}{b}+\frac{b}{a}+2\right)\)
Đặt \(\sqrt[3]{\frac{a}{b}}+\sqrt[3]{\frac{b}{a}}=x\ge2\) BĐT tương đương:
\(x^3\le2\left(x^3-3x+2\right)\)
\(\Leftrightarrow x^3-6x+4\ge0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+2x-2\right)\ge0\)
\(\Leftrightarrow\left(x-2\right)\left[x^2+x+x-2\right]\ge0\) (luôn đúng)
Vậy BĐT được chứng minh, dấu "=" xảy ra khi \(x=2\Leftrightarrow a=b\)