K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 9 2023

Vì a không chia hết cho 3 nên \(a=3k+1\) hoặc \(a=3k+2\) với \(k\inℕ\)

Nếu \(a=3k+1\) thì \(a^2-1=\left(3k+1\right)^2-1=9k^2+6k⋮3\)

Nếu \(a=3k+2\) thì \(a^2-1=\left(3k+2\right)^2-1=9k^2+12k+3⋮3\)

Vậy ta có đpcm.

20 tháng 11 2023

test câu trả lời

5 tháng 11 2017

khó quá

27 tháng 3 2018

dễ mà cô nương

\(a^3-b^3=\left(a-b\right)\left(a^2+ab+b^2\right)\)

\(\left(a^2+ab+b^2\right)=\left\{\left(a+b\right)^2-ab\right\}\)

\(a^3-b^3=\left(a-b\right)\left(25-6\right)=19\left(a-b\right)\)

ta có 

\(a=-5-b\)

suy ra

\(a^3-b^3=19\left(-5-2b\right)\) " xong "

2, trên mạng đầy

3, dytt mọe mày ngu ab=6 thì cmm nó phải chia hết cho 6 chứ :)

4 . \(x^2-\frac{2.1}{2}x+\frac{1}{4}+\frac{1}{3}-\frac{1}{4}>0\) tự làm dcmm

5. trên mạng đầy

6 , trên mang jđầy 

19 tháng 7 2016

thiếu đề a phải thuộc Z thì phải

21 tháng 12 2019

a, \(a^2\left(a+1\right)+2a\left(a+1\right)\)

\(=a\left(a+1\right)\left(a+2\right)\)

\(a,a+1\) là 2 số tự nhiên liên tiếp nên:

\(\Rightarrow a\left(a+1\right)\) chia hết cho \(2\)

\(\Rightarrow a\left(a+1\right)\left(a+2\right)\) chia hết cho \(2\)

\(a,a+1,a+2\) là 3 số tự nhiên liên tiếp nên:

\(\Rightarrow a\left(a+1\right)\left(a+2\right)\) chia hết cho 3

\(\Rightarrow a\left(a+1\right)\left(a+2\right)\) chia hết cho \(2.3\)

\(\Rightarrow a\left(a+1\right)\left(a+2\right)\) chia hết cho \(6\left(đpcm\right)\)

b, \(a\left(2a-3\right)-2a\left(a+1\right)\)

\(=a\left[2a-3-2\left(a+1\right)\right]\)

\(=-5a\) chia hết cho \(5\left(đpcm\right)\)

23 tháng 1 2018

là 10 nhé

17 tháng 8 2018

\(2a,\left(6x+7\right)\left(2x-3\right)-\left(4x+1\right)\left(3x-\frac{7}{4}\right)\)

\(=12x^2-18x+14x-21-12x^2+7x-3x+\frac{7}{4}\)

\(=-21+\frac{7}{4}\)chứng tỏ biểu thức ko phụ thuộc vào biến x

17 tháng 8 2018

3, Đặt 2n+1=a^2; 3n+1=b^2=>a^2+b^2=5n+2 chia 5 dư 2

Mà số chính phương chia 5 chỉ có thể dư 0,1,4=>a^2 chia 5 dư 1, b^2 chia 5 dư 1=>n chia hết cho 5(1)

Tương tự ta có b^2-a^2=n

Vì số chính phươn lẻ chia 8 dư 1=>a^2 chia 8 dư 1 hay 2n chia hết cho 8=> n chia hết cho 4=> n chẵn

Vì n chẵn => b^2= 3n+1 lẻ => b^2 chia 8 dư 1

Do đó b^2-a^2 chia hết cho 8 hay n chia hết cho 8(2)

Từ (1) và (2)=> n chia hết cho 40