K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2020

Ta có :

  A= \(\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+....+\frac{1}{22}>\) \(\frac{1}{22}+\frac{1}{22}+\frac{1}{22}+...+\frac{1}{22}=\frac{11}{22}=\frac{1}{2}\)

                                                                                  \---------------------------------------------/

                                                                                         11 số 1/22

Từ trên ta có đpcm

26 tháng 4 2020

XÀMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM

26 tháng 4 2020

Trần Ngoc an

14 tháng 3 2019

\(B=\frac{1}{12}+\frac{1}{13}+...+\frac{1}{22}\)có 11 số hạng

Ta có: \(\frac{1}{12}>\frac{1}{22}\)

           \(\frac{1}{13}>\frac{1}{22}\)

              .............

           \(\frac{1}{22}=\frac{1}{22}\)

\(\Rightarrow B>\left(\frac{1}{22}+\frac{1}{22}+...+\frac{1}{22}\right)=\frac{11}{22}=\frac{1}{2}\)

26 tháng 4 2020

\(\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+...+\frac{1}{22}>\frac{1}{2}\)

Ta có: \(\frac{1}{12}+\frac{1}{13}+...+\frac{1}{19}>\frac{1}{20}\) (vì từng phân số lớn hơn \(\frac{1}{20}\))

\(\Rightarrow\frac{1}{12}+\frac{1}{13}+...+\frac{1}{19}+\frac{1}{20}>\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}=\frac{10}{20}=\frac{1}{2}\)

\(\frac{1}{12}+\frac{1}{13}+...+\frac{1}{20}>\frac{1}{2}\)

\(\Rightarrow\) \(\frac{1}{12}+\frac{1}{13}+...+\frac{1}{22}>\frac{1}{2}\)

Chúc bn học tốt

29 tháng 4 2020

\(A=\frac{10}{27}+\frac{9}{16}\frac{11}{34}\)

Ta có: \(\frac{10}{27}< >\backslash\left(\frac{9}{16}< >\backslash\left(\frac{11}{34}< >Nên\backslash\left(A< >b\right)\right)\right)\backslash\left(B=\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+...+\frac{1}{22}\right)\)

\(B>\frac{1}{22}+\frac{1}{22}+\frac{1}{22}+...+\frac{1}{22}=11.\frac{1}{22}=\frac{1}{2}\)

Nên \(B>\frac{1}{2}\)

25 tháng 3 2017

Ta có : \(B=\dfrac{1}{12}>\dfrac{1}{22};\dfrac{1}{13}>\dfrac{1}{22};....;\dfrac{1}{21}>\dfrac{1}{22}\)

Vậy : \(B=\dfrac{1}{12}+\dfrac{1}{13}+...+\dfrac{1}{22}>\dfrac{1}{22}+\dfrac{1}{22}+\dfrac{1}{22}+...+\dfrac{1}{22}=\dfrac{11}{22}=\dfrac{1}{2}\)

( Có 11 số hạng \(\dfrac{1}{2}\))

Hay B \(>\dfrac{1}{2}\)