Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : n là số tự nhiên lẻ => n = 2k+1 (\(k\in N^{\text{*}}\))
\(n^2-1=\left(2k+1\right)^2-1=4k^2+4k+1-1=4k\left(k+1\right)\)
Vì k(k+1) là tích của hai số tự nhiên liên tiếp nên chia hết cho 2.
Do đó : 4k(k+1) chia hết cho 2.4=8
Câu đầu tiên của đề bài là "Với mọi \(n\inℤ^+\)..." chứ không phải \(m\) nhé, mình gõ nhầm.
a) Ta phân tích \(n=x_1^{a_1}.x_2^{a_2}...x_m^{a_m}\) (với \(x_1;x_2;..x_n\) là số nguyên tố ;
\(a_1;a_2;..a_m\inℕ^∗\) và là số mũ tối đa của mỗi số nguyên tố )
Khi đó ta có \(\sigma\left(n\right)=\left(a_1+1\right)\left(a_2+1\right)...\left(a_m+1\right)\)
mà \(\sigma\left(n\right)\) lẻ \(\Leftrightarrow\) \(a_1+1;a_2+1;...a_m+1\) lẻ
\(\Leftrightarrow a_1;a_2;..a_m\) chẵn
\(\Leftrightarrow n\) là số chính phương
=> n luôn có dạng \(n=l^2\)
Mặt khác \(x_1;x_2;..x_m\) là số nguyên tố
Nếu \(x_1;x_2;..x_m\) đều là số nguyên tố lẻ thì l lẻ
<=> r = 0 nên n = 2r.l2 đúng (1)
Nếu \(x_1;x_2;..x_m\) tồn tại 1 cơ số \(x_k=2\)
TH1 : \(a_k\) \(⋮2\)
\(\Leftrightarrow a_k+1\) lẻ => \(\sigma\left(n\right)\) lẻ (thỏa mãn giả thiết)
=> n có dạng n = 2r.l2 (r chẵn , l lẻ)(2)
TH2 : ak lẻ
Ta dễ loại TH2 vì khi đó \(a_k+1⋮2\) nên \(\sigma\left(n\right)⋮2\) (trái với giả thiết)
Nếu \(n=2^m\) (m \(⋮2\)) thì r = m ; l = 1 (tm) (3)
Từ (1);(2);(3) => ĐPCM
(1) “Với mọi số tự nhiên \(x,\,\,\sqrt x \) là số vô tỉ” sai, chẳng hạn \(x = 1:\;\sqrt x = 1\) không là số vô tỉ.
(2) “Bình phương của mọi số thực đều không âm” đúng;
(3) “Có số nguyên cộng với chính nó bằng 0” đúng, số nguyên đó chính là số 0;
(4) “Có số tự nhiên n sao cho 2n – 1 = 0” sai, vì chỉ khi \(n = \frac{1}{2}\) thì 2n – 1 = 0 nhưng \(\frac{1}{2}\) không phải là số tự nhiên.
a) \(\exists a\in\mathbb{Z}:a=a^2\)
b) \(\forall x\in\mathbb{R}:x+0=x\)
c) \(\exists x\in\mathbb{Q}:x< \dfrac{1}{x}\)
d) \(\forall n\in\mathbb{N}:n>0\)
P: "\(\forall n \in \mathbb N,\;{n^2} \ge n".\)
Q: "\(\exists \;a \in \mathbb R,\;a + a = 0".\)
Nếu n lẻ thì n3 lẻ
n lẻ <=> n =2k +1 (k ∈ Z)
n^3 =(2k +1)3 =8k3 +3.4k2 +3.2k +1=2( 4k3 +6k2 +3 k) +1
2( 4k3 +6k2 +3 k) chia hết cho 2 => là số chẵn
=>2( 4k3 +6k2 +3 k) +1 là số lẻ => n3 lẻ
Nếu nn lẻ thì nn có dạng n = 2k+1n=2k+1 với k \in \mathbb{N}k∈N.
Do đó n^3 = (2k+1)^3 = 8k^3 + 12k^2 + 6k+1 = 2(k^3 + 6k^2 + 3k) + 1n3=(2k+1)3=8k3+12k2+6k+1=2(k3+6k2+3k)+1.
Suy ra n^3n3 lẻ.
Vậy với mọi số tự nhiên nn, nếu nn lẻ thì n^3n3 lẻ.
Đề bài : Chứng minh rằng tổng lập phương của các số tự nhiên liên tiếp từ 1 đến n bằng bình phương của tổng từ 1 đến n ( n tự nhiên ). Hay ta cần chứng minh : \(1^3+2^3+3^3+4^3+....+n^3=\left(1+2+....+n\right)^2\) (*)
Lời giải :
+) Xét \(n=1\) thì ta có : \(1^3=1^2\) ( đúng )
Suy ra (*) đúng với \(n=1\) (1)
+) Xét \(n=2\) ta có : \(1^3+2^3=1+8=9\); \(\left(1+2\right)^2=3^2=9\)
\(\Rightarrow1^3+2^3=\left(1+2\right)^2\) ( đúng ). Nên (*) đúng với \(n=2\) (2)
+) Giả sử (*) đúng với \(n=k\). Tức là : \(1^3+2^3+3^3+....+k^3=\left(1+2+...+k\right)^2\).
Ta cần chứng minh \(n=k+1\) cũng đúng với (*). Thật vậy , ta có :
\(1^3+2^3+3^3+.....+\left(k+1\right)^3\)
\(=1^3+2^3+....+k^3+\left(k+1\right)^3\)
\(=\left(1+2+3+....+k\right)^2+\left(k+1\right)^3\)
Xét biểu thức \(\left(k+1\right)^2+2.\left(k+1\right).\left(1+2+3+....+k\right)\)
\(=\left(k+1\right)^2+2.\left(k+1\right)\cdot\frac{\left(k+1\right).k}{2}\)
\(=\left(k+1\right)^2+\left(k+1\right)^2.k=\left(k+1\right)^3\)
Do đó \(1^3+2^3+....+\left(k+1\right)^3\)
\(=\left(1+2+3+....+k\right)^2+2.\left(k+1\right)\left(1+2+....+k\right)+\left(k+1\right)^2\)
\(=\left(1+2+3+....+k+k+1\right)^2\)
Vậy (*) đúng với \(n=k+1\) (3)
Từ (1) (2) và (3) suy ra \(1^3+2^3+3^3+4^3+....+n^3=\left(1+2+....+n\right)^2\) với mọi \(n\in N\).
a) Gọi n=2k+1(k \(\in\) N*)
\(\Rightarrow\)n= (k2+2k+1) - k2 = (k+1)2 - k2 (1)
Mà k \(\in\) N*\(\Rightarrow\) k và k+1 là 2 số tự nhiên liên tiếp \(\Rightarrow\) k2 và (k+1)2 là 2 số chính phương liên tiếp (2)
Từ (1);(2)\(\Rightarrow\) đpcm
b) Gọi n=2k+1(k \(\in\) N*)
\(\Rightarrow\) n2=(2k+1)2=4k2+4k+1=4k(k+1)+1(1)
Lại có: k \(\in\) N* \(\Rightarrow\) k và k+1 là 2 số tự nhiên liên tiếp \(\Rightarrow\) k(k+1) \(⋮2\)
\(\Rightarrow4k\left(k+1\right)⋮8\) \(\Rightarrow\) 4k(k+1)+1 chia 8 dư 1(2)
Từ(1);(2)\(\Rightarrow\) n2 chia 8 dư 1 với mọi n là số tự nhiên lẻ