K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 2 2018

đặt \(\frac{a}{b}=\frac{c}{d}=k\) \(\left(1\right)\)

\(\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)\(\Rightarrow\frac{a+c}{b+d}=\frac{bk+dk}{b+d}=\frac{k\left(b+d\right)}{b+d}=k\) \(\left(2\right)\)

\(\left(1\right)\left(2\right)\Rightarrowđpcm\)

điều vừa chứng minh cũng tương tự với dấu "-"

13 tháng 2 2020

a) \(a.\left(b+c\right)-b.\left(a-c\right)=a.b+a.c-b.a+b.c=a.c+b.c=c.\left(a+b\right)\)

b) \(a.\left(b-c\right)-a.\left(b+d\right)=a.b-a.c-a.b-a.d=-a.c-a.d=-a.\left(c+d\right)\)

ĐPCM

13 tháng 2 2020

a)Xét VT(vế trái)=a.(b+c)-b.(a-c)         b)Xét VT=a(b-c)-a(b+d)

  1. =ab+ac-ba+bc.                              =ab-ac-ab-ad
  2. =c.(a+b)=VP(vế phải).                   =-ac-ad
  3.                                                        =-a(c+d)=VP
18 tháng 4 2018

Ta có : 

\(\frac{a}{a+b+c}>\frac{a}{a+b+c+d}\)

\(\frac{b}{a+b+d}>\frac{b}{a+b+c+d}\)

\(\frac{c}{b+c+d}>\frac{c}{a+b+c+d}\)

\(\frac{d}{c+d+a}>\frac{d}{a+b+c+d}\)

\(\Rightarrow\)\(M=\frac{a}{a+b+c}+\frac{b}{a+b+d}+\frac{c}{b+c+d}+\frac{d}{c+d+a}>\frac{a+b+c+d}{a+b+c+d}=1\) ( cộng theo vế 4 đẳng thức trên ) 

\(\Rightarrow\)\(M>1\) \(\left(1\right)\)

Lại có : ( phần này áp dụng công thức \(\frac{a}{b}< \frac{a+m}{b+m}\) \(\left(\frac{a}{b}< 1;a,b,m\inℕ^∗\right)\) ) 

\(\frac{a}{a+b+c}< \frac{a+d}{a+b+c+d}\)

\(\frac{b}{a+b+d}< \frac{b+c}{a+b+c+d}\)

\(\frac{c}{b+c+d}< \frac{c+a}{a+b+c+d}\)

\(\frac{d}{c+d+a}< \frac{d+b}{a+b+c+d}\)

\(\Rightarrow\)\(M=\frac{a}{a+b+c}+\frac{b}{a+b+d}+\frac{c}{b+c+d}+\frac{d}{c+d+a}< \frac{2\left(a+b+c+d\right)}{a+b+c+d}=2\) ( cộng theo vế 4 đẳng thức trên ) 

\(\Rightarrow\)\(M< 2\) \(\left(2\right)\)

Từ (1) và (2) suy ra đpcm : \(1< M< 2\)

Vậy \(1< M< 2\)

Chúc bạn học tốt ~ 

5 tháng 2 2020

Bài 1:

\(-\left(-m+n+p\right)+\left(n+p-3\right)=\left(n-p+8\right)-\left(11-m+n\right)+p\\ \Leftrightarrow m-n-p+n+p-3=n-p+8-11+m-n+p\\ \Leftrightarrow\left(n-n\right)+\left(p-p\right)+m-3=\left(n-n\right)+\left(p-p\right)+m+\left(8-11\right)\\ \Leftrightarrow m-3=m+\left(-3\right)\\ \Leftrightarrow m-3=m-3\\ \Leftrightarrow0=0\left(\text{luôn đúng}\right)\)

Ta được đpcm

Bài 2:

\(A-B=\left(b-c-4\right)-\left(b-a\right)\\ A-B=b-c-4-b+a\\ A-B=\left(b-b\right)+a-c-4\\ A-B=a-c-4\left(1\right)\)

\(C+D=\left(-b-c+1\right)+\left(a+b-5\right)\\ C+D=-b-c+1+a+b-5\\ C+D=\left(b-b\right)+a-c+\left(1-5\right)\\ C+D=a-c+\left(-4\right)\\ C+D=a-c-4\left(2\right)\)

(1) (2) \(\Rightarrow A-B=C+D\left(đpcm\right)\)

5 tháng 2 2020

Đpcm là gì hả bạn

leuleuTks bạn nhìu

5 tháng 3 2017

beautiful