Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
các bài toán bên dưới đều có thể áp dụng bđt tổng quát sau:
a²/x + b²/y + c²/z + d²/t ≥ (a+b+c+d)² /(x+y+z+t) (*-*)
bao nhiêu cặp số cũng đc trong đó có đk x, y, z, t > 0
dấu "=" khi a/x = b/y = c/z = d/y
~ ~ ~ ~
chứng minh là hệ quả trực tiếp từ bđt Bunhiacopski
hoặc cách khác: với 2 cặp số: a²/x + b²/y ≥ (a+b)²/(x+y)
ta chứng minh bằng biến đổi tương đương sẽ bđt đúng là (ay-bx)² ≥ 0
ad: a²/x + b²/y + c²/z ≥ (a+b)²/(x+y) + c²/z ≥ (a+b+c)²/(x+y+z)
cứ bổ sung thêm vào ta cm được cho 4, 5... cặp số
~ ~ ~ ~
1) ad (*-*) với 5 cặp số:
1/a + 1/a + 1/b + 1/c + 1/d ≥ (5)² /(2a+b+c+d)
=> 25/(2a+b+c+d) ≤ 2/a + 1/b + 1/c + 1/d
tương tự: 25/(a+2b+c+d) ≤ 2/b + 1/a + 1/c + 1/d
25/(a+b+2c+d) ≤ 2/c + 1/a + 1/b + 1/d
25/(a+b+c+2d) ≤ 2/d + 1/a + 1/b + 1/c
cộng lại 4 bđt trên:
25.VT ≤ 5(1/a + 1/b + 1/c +1/d) = 25 => VT ≤ 1 (đpcm) ; dấu "=" khi a = b = c = d = 1
~ ~ ~ ~
2) ad bđt (*-*) với 4 cặp số:
a/(b+c) + b/(c+d) + c/(d+a) + d/(a+b) =
= a²/(ab+ac) + b²/(bc+bd) + c²/(cd+ca) + d²/(da+db) ≥
≥ (a+b+ c+d)²/(ab+ac +bc+bd + cd+ca + da+db) cần cm ≥ 2
qui đồng, khai triển rút gọ => cần cm a²+b²+c²+d² ≥ 2ca + 2db
<=> (a-c)² + (b-d)² ≥ 0 là bđt đúng => đpcm
~ ~ ~ ~
3) hình như lại ghi sai đề, thử thay a = 2, b = c = 1 có:
a/(b+2a) + b/(c+2a) + c/(a+2b) = 2/5 + 1/5 + 1/4 = 17/20 ≥ 1 (???)
~ ~ ~ ~
4) vẫn ad (*-*): dùng luôn cho 8 cặp số (hoặc tách thành vài lần kủng đc)
1/a + 3(1/b) + 4(1/c) ≥ (1+3+4)² /(a+3b+4c)
1/b + 3(1/c) + 4(1/a) ≥ (1+3+4)² /(b+3c+4a)
1/c + 3(1/a) + 4(1/b) ≥ (1+3+4)² /(c+3a+4b)
cộng lại hết:
8(1/a + 1/b + 1/c) ≥ 8²/(a+3b+4c) + 8²/(b+3c+4a) + 8²/(c+3a+4b)
=> 8²/(a+3b+4c) + 8²/(b+3c+4a) + 8²/(c+3a+4b) ≤ 8(bc+ca+ab)/abc = 8
=> 1/(a+3b+4c) + 1/(b+3c+4a) + 1/(c+3a+4b) ≤ 1/8 (đpcm)
dấu "=" khi a = b = c = 3
~ ~ ~ ~ ~
5) ad (*-*)
a/(a+2b+3c) + b/(b+2c+3a) + c/(c+2a+3b) =
= a²/(a²+2ab+3ac) + b²/(b²+2bc+3ab) + c²/(c²+2ac+3bc) ≥
≥ (a+b+c)² /(a²+b²+c² + 5ab + 5ac + 5bc)
mặt khác có bđt: a²+b²+c² ≥ ab+bc+ca
=> (a+b+c)² = a²+b²+c² + 2ab+2bc+2ca ≥ 3ab+bc+3ca
=> 2(a+b+c)² ≥ (a+b+c)² + 3ab+3bc+3ca = a²+b²+c² + 5ab+5bc+5ca
=> (a+b+c)² /(a²+b²+c² + 5ab + 5ac + 5bc) ≥ 1/2
thay vào trên ta có VT ≥ 1/2 (đpcm); dấu "=" khi a = b = c
Có: A+B = a + b - 5 - b - c + 1 = a - c - 4
C - D = b - c - 4 - b + a = a - c - 4
=> A + B = C - C ( = a - c -4)
A + B = a + b - 5 + ( - b - c + 1)= a + b - 5 - b - c + 1 = a - c - 4 (1)
C - D = b - c - 4 - (b - a) = b - c - 4 - b + a = - c - 4 + a = a - c - 4 (2)
(1) và (2) => A + B = C - D
Ta có : B-A
= ( b+ c - 1) - ( -a + b + c)
= b+ c + (-1) - ( -a ) -b-c
= b+ c + ( -1) +a + ( -b) + (-c)
= [ b + ( -b) ] + [c+(-c)] + (-1)+ a
= 0 + 0 + ( -1) + a
= (-1)+a
Ta có : C-D
= ( b-c+6) - ( 7-a+b+c) ( chỗ này bạn sai đề, mk sửa lại cho ý )
= b-c+6-7+a-b+c
= b+(-c) + 6 + (-7)+a+(-b)+c
= [ b+(-b)] + [ (-c)+c] + a+ ( -7+6)
= 0 + 0 + ( -1) + a
= (-1)+a
=> B-A = C-D
Duyệt đi , chúc bạn hk giỏi
Ta có:
B - A = b + c - 1 - (-a + b + c)
= b + c - 1 + a - b - c
= (b - b) + (c - c) - 1 + a
= 0 + 0 - 1 + a
= -1 + a (1)
C - D = b - c + 6 - (7 - a + b - c)
= b - c + 6 - 7 + a - b + c
= (b - b) + (c - c) - (7 - 6) + a
= 0 + 0 - 1 + a
= -1 + a (2)
Từ (1) và (2) => B - A = C - D
Theo t/c dãy tỉ số=nhau:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
\(=>a=b;b=c;c=a=>a=b=c\left(đpcm\right)\)
\(\frac{a}{c}=\frac{c}{b}\Rightarrow ab=c^2\)
a, \(\frac{a^2+c^2}{b^2+c^2}=\frac{a^2+ab}{b^2+ab}=\frac{a\left(a+b\right)}{b\left(a+b\right)}=\frac{a}{b}\)
b, \(\frac{b^2-a^2}{a^2+c^2}=\frac{\left(b-a\right)\left(b+a\right)}{a^2+ab}=\frac{\left(b-a\right)\left(a+b\right)}{a\left(a+b\right)}=\frac{b-a}{a}\)
Mình gọi a1,a2,a3,a4 là a,b,c,d nha
Ta có: \(\hept{\begin{cases}b^2=a\cdot c\\c^2=b\cdot d\end{cases}\Rightarrow\hept{\begin{cases}\frac{a}{b}=\frac{b}{c}\\\frac{b}{c}=\frac{c}{d}\end{cases}}}\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)
\(\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a\cdot b\cdot c}{b\cdot c\cdot d}=\frac{a}{d}\)\(\left(1\right)\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta được:
\(\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)\(\left(2\right)\)
Từ (1) và (2)
\(\Rightarrow\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)(\(\left(ĐPCM\right)\)
a/ a.(b+c)-b(a-c)=ab+ac-ab+bc=ac+bc=c.(a+b) => dpcm
b/ a.(b-c)-a.(b+d)=ab-ac-ab-ad=-ac-ad=-a(c+d) => dpcm
a.
a.(b+c)-b.(a-c) = (a+b).c
Ta xét vế trái :
a.(b+c)-b.(a-c)
=a.b +a.c - b.a +b.c
=(a.b+b.c) -(b.a-a.b)
=(a+b).c - 0
=(a+b).c
Vậy a.(b+c)-b.(a-c)= (a+b).c
b.
a.(b-c)-a.(b+d) = -a.(c+d)
Ta xét vế trái :
a.(b-c)-a.(b+d)
=a.b - a.c - a.b - a.d
=(a.b - a.b) - (a.c - a.d)
= 0 - a.(c+d)
= -a.(c+d)
Vậy a.(b-c)-a.(b+d) = -a.(c+d)
❤Good❤ study !!!❤