Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, gọi d là ƯCLN(2n+1, 5n+2 )
\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\5n+2⋮d\end{cases}}\Rightarrow\hept{\begin{cases}5\left(2n+1\right)⋮d\\2\left(5n+2\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}10n+5⋮d\\10+4⋮d\end{cases}}\)
\(\Rightarrow\left(10+5\right)-\left(10+4\right)⋮d\)
\(\Rightarrow10+5-10-4⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=\left\{-1;1\right\}\)
vậy...............
Đặt \(d=\left(6n+5,3n+2\right)\).
Suy ra \(\hept{\begin{cases}6n+5⋮d\\3n+2⋮d\end{cases}}\Rightarrow\left(6n+5\right)-2\left(3n+2\right)=1⋮d\Rightarrow d=1\).
Do đó ta có đpcm.
để p/số trên tối giản thì ƯCLN là 1,gọi số đó là d
n+1:d,2n+2:d
2n+3-2n-2:d
1:d
d=1
vậy p/số đó luôn tối giản
gọi ƯC(n+1;2n+3)=d
ta có n+1 chia hết cho d nên 2(n+1) chia hết cho d nên 2n+2 cũng chia hết cho d , mặt khác 2n+3 chia hết cho d
nên 2n+3-(2n+2) chia hết cho d nên 1 chia hết cho d vậy ƯC của n+1 và 2n+3 là 1 hoặc -1
do đó mọi fân số dạng n+1/2n+3 đều là phân số tối giản
Gọi d là ước chung của 7n + 4 và 5n + 3.
⇒ 7n + 4⋮d và 5n + 3⋮d
⇒ 5( 7n + 4)⋮d và 7( 5n + 3)⋮d
⇒35n + 20⋮d và 35n + 21⋮d
⇒35n + 20 - 35n - 21⋮d
⇒-1⋮d
⇒d là ước của -1. Mà Ư(-1) ={ 1; -1}
⇒d ∈ { 1; -1}
Như vậy ta thấy hai số 7n + 4 và 5n + 3 chỉ có hai ước là 1 và -1
Vậy phân số 7n+4/5n+3 là phân số tối giản
\(A=\frac{3n+2}{6n+3}\) là phân số tối giản <=>3n+2 và 6n+3 là 2 số ntố cùng nhau
Gọi (3n+2;6n+3)=d
=>3n+2 chia hết cho d <=>2(3n+2)chia hết cho d
<=>6n+4 chia hết cho d
mà 6n+3 cũng chia hết cho d nên
(6n+3)(6n+4) chia hết cho d
mà đây là 2 số liên tiếp
=>d=1
=>A là ps tối giản
nhớ tick mình nha ,cảm ơn
thôi còn thắc mắc gì nữa ko được ns như thế với bn mik nghe chưa.
gọi d là ƯC(7n + 4; 5n + 3)
=> 7n + 4 và 5n + 3 ⋮ d
=> 5(7n + 4) và 7(5n + 3) ⋮ d
=> 35n + 20 và 35n + 21 ⋮ d
=> (35n + 21) - (35n +20) ⋮ d
=> 1 ⋮ d
=> d = + 1
=> 7n+4/5n+3 là phân số tối giản
Đặt \(\left(7n+4;5n+3\right)=d\)
\(\Rightarrow\hept{\begin{cases}7n+4⋮d\\5n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}5.\left(7n+4\right)⋮d\\7.\left(5n+3\right)⋮d\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}35n+20⋮d\\35n+21⋮d\end{cases}}\)
\(\Rightarrow\left(35n+21\right)-\left(35n+20\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d\inƯ\left(1\right)=\left\{\pm1\right\}\)
\(\Rightarrow\frac{7n+4}{5n+3}\)là phân số tối giản
bó tay chấm com .v n