Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,26.3+17.43=26.3+17.26=26.(3+17)=26.20 chia hết cho 10
b,Ta có A=(3+32+33)+...+(3100+3101+3102)=40+40.33+...+40.3100 =40.(1+33+...+3100) chia hết cho 4
A=(3+32)+...+(3101+3102)=13.(32+...+3100) chia hết cho 13
c,Ta có C có 10 số hạng. mà mỗi số hang của C đếu có tận cùng là 1 nên C có tận cùng là 0 chia hheets cho 5
2.Với n=2k=>n.(n+3) chia hết cho 2
với n=2k+1=>n+3 chia hết cho 2=>
n.(n+3) chia hết cho 2
=>với n thuộc N thì n.(n+3) chia hết cho 2
Thực ra thì mấy câu này cx tương tự như nhau nên mk chỉ lm 1 câu, còn lại b tự lm tiếp nhé!
a/ \(A=2+2^2+2^3+.........+2^{2010}\)
\(=\left(2+2^2\right)+\left(2^3+2^4\right)+.......+\left(2^{2009}+2^{2010}\right)\)
\(=2\left(1+2\right)+2^3\left(1+2\right)+.......+2^{2009}\left(1+2\right)\)
\(=2.3+2^3.3+.......+2^{2009}.3\)
\(=3\left(2+2^3+.......+2^{2009}\right)⋮3\left(đpcm\right)\)
\(A=2+2^2+2^3+........+2^{2010}\)
\(=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+......+\left(2^{2008}+2^{2009}+2^{2010}\right)\)
\(=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+......+2^{2008}\left(1+2+2^2\right)\)
\(=2.7+2^4.7+........+2^{2008}.7\)
\(=7\left(2+2^4+.......+2^{2008}\right)⋮7\left(đpcm\right)\)
Cảm ơn bạn nhiều
Nếu ko có bạn thì mai mình ko thi đc học kì đc đâu!
2.
a) Ta có: \(\frac{n+6}{n}=\frac{n}{n}+\frac{6}{n}=1+\frac{6}{n}\)
Để n + 6 chia hết cho n thì \(\frac{6}{n}\) phải là số tự nhiên
\(\Rightarrow n\in\text{Ư}\left(6\right)=\left\{1;2;3;6\right\}\)
Vậy \(n\in\left\{1;2;3;6\right\}\)
c) Ta có: \(\frac{n+4}{n+1}=\frac{n+1+3}{n+1}=\frac{n+1}{n+1}+\frac{3}{n+1}=1+\frac{3}{n+1}\)
Để n + 4 chia hết cho n + 1 thì \(\frac{3}{n+1}\) phải là số tự nhiên
\(\Rightarrow n+1\in\text{Ư}\left(3\right)=\left\{1;3\right\}\)
\(\Rightarrow n\in\left\{0;2\right\}\)
Vậy \(n\in\left\{0;2\right\}\)
2. (n+5)\(⋮\)(n-1)
(n-1+6) chia hết (n-1)
mà n-1 chia hết cho n-1
Để (n-1+6) chia hết cho (n-1) thì 6 pải chia hết cho (n-1)
Hay (n-1) thuộc ước của 6 mà ước của 6=....
Tự làm tiếp nha ^^
3n+4+3n+2 + 2n+3 + 2n+1
= 3n.( 34 + 32) + 2n.( 23+2)
= 3n.90 + 2n.10
= 10.( 3n.9+2n.5)
vì 10 ⋮ 5 ⇔ 10.( 3n.9 + 2n.5) ⋮ 5 ⇔ 3n+4+3n+2+2n+2+2n+1 ⋮ 5(đpcm)