Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi \(d\)là \(UCLN\left(2n+3;4n+8\right)\)
\(\Rightarrow\left\{{}\begin{matrix}2n+3⋮d\\4n+8⋮d\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}4n+6⋮d\\4n+8⋮d\end{matrix}\right.\)
\(\Rightarrow\left(4n+8\right)-\left(4n+6\right)⋮d\)
\(2⋮d\)
\(\Rightarrow\dfrac{2n+3}{4n+8}\) tối giản khi và chỉ khi \(n\in\left\{\pm1;\pm2\right\}\)
=(1+4+42) +(43+44+45)+....+(42017+42018+42019)
=(1+4+42)+43(1+4+42)+.....+42017(1+4+42)
=(1+4+42)(1+43+46+....+42017)
=(1+4+16)(1+43+46+.....+42017)
=21(1+43+46+...+42017)
Vậy 21(1+43+46+.....+42017) chia hết cho 21
\(1+4+4^2+4^3+4^4+....+4^{2019}\)
\(=\left(1+4+4^2\right)+\left(4^3+4^4+4^5\right)+......+\left(4^{2017}+4^{2018}+4^{2019}\right)\)
\(=\left(1+4+4^2\right)+4^3\left(1+4+4^2\right)+.....+4^{2017}\left(1+4+4^2\right)\)
\(=\left(1+4+4^2\right)\left(1+4^3+.....+4^{2017}\right)\)
\(=21\left(1+4^3+....+4^{2017}\right)\)
Mà \(21⋮21\Rightarrow21\left(1+4^3+.....+4^{2017}\right)⋮21\)
Vậy biểu thức trên chia hết cho 21(đpcm)
A = n( 5n + 3 )
ta thấy \(n⋮n\Rightarrow n\left(5n+3\right)⋮n\Rightarrow A⋮n\)
vậy với mọi \(n\in Z\) thì \(A⋮n\)
( n + 3 ) ( n + 6 )
Ta có: n chia 2 sẽ dư 0 hoặc dư 1
* Nếu n chia hết cho 2
=> n + 6 chia hết cho 2
=> ( n + 3 ) ( n+ 6 ) chia hết cho 2
* Nếu n chia 2 dư 1
=> n + 3 chia hết cho 2
=> ( n + 3 ) ( n+ 6 ) chia hết cho 2
Vậy ( n + 3 ) ( n+ 6 ) chia hết cho 2 với mọi số tự nhiên n ( đpcm )
Ta có n, n+1, n+2 là ba số tự nhiên (hoặc số nguyên) liên tiếp nên trong ba số đó chắc chắn có một số chẵn nên n(n+1)(n+2) chia hết cho 2.
Vì n, n+1, n+2 là ba số tự nhiên (hoặc số nguyên) liên tiếp nên khi chia cho 3 sẽ có ba số dư khác nhau là 0, 1, 2 suy ra n(n+1)(n+2) chia hết cho 3.
Chúc bạn học giỏi
theo mình thì tích của 3 số tự nhiên liên tiếp chia hết cho 6.vì vậy mà nó chia hết cho 2 và 3
Vì số nguyên tố chẵn duy nhất là số 2 nên:
Nếu 3 số nguyên tố đó đều lớn hơn 2 thì tổng 3 số này phải là 1 số lẻ (tổng 3 số lẻ)
Mà 1012 là số chẵn nên trong 3 số có số 2.
Vậy số nhỏ nhất trong 3 số nguyên tố đó là số 2.
a) Gọi \(d=ƯCLN\left(2n+1;4n+5\right)\)
\(\Leftrightarrow\hept{\begin{cases}2n+1⋮d\\4n+5⋮d\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}4n+2⋮d\\4n+5⋮d\end{cases}}\)
\(\Leftrightarrow3⋮d\)
Vì \(d\in N;3⋮d\Leftrightarrow d=1;3\)
Ok đề sai!
dfakdfgaewtrywiesfgggggggggggggggguououououououououououououoatuaewbgggggggggggggggggaaaaaaaaaaaaaaaafhhhhhhhhhhhhhhhhhaooooooooooooooooooofhhhhhhhhhhhhhhhhhhoaaaaaaaaaaaaaaaaaaaaaaafhhhhhhhhhhhhhhaoooooooooooooooohffffffoaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
- aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
vô lý
VD:n=2 <=>3+2=5 vậy đè sai
So vô lí hư cấu:
3+(-2)=1,
3+2=5,...