K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 12 2017

\(vt=1+2015+2015^2+2015^3+2015^4+2015^5+2015^6+2015^7\)

\(=\left(1+2015\right)+\left(2015^2+2015^3\right)+\left(2015^4+2015^5\right)+\left(2015^6+2015^7\right)\)

\(=1\left(1+2015\right)+2015^2\left(1+2015\right)+2015^4\left(1+2015\right)+2015^6\left(1+2015\right)\)

\(=\left(2015+1\right)\left(1+2015^2+2015^4+2015^6\right)\)

\(=2016\left(1+2015^2+2015^4+2015^6\right)\)

\(=2016\left[\left(1+2015^2\right)+\left(2015^4+2015^6\right)\right]\)
\(=2016\left[1\left(1+2015^2\right)+2015^{2014}\left(1+2015^2\right)\right]=vp\left(đpcm\right)\)

\(=2016\left(1+2015^{2014}\right)\left(1+2015^{2012}\right)\)

19 tháng 12 2017

cái chỗ =vp(đpcm ở dòng dưới nhé mk gõ nhầm)

18 tháng 3 2017

Vì  \(a,b,c\)  lần lượt là độ dài ba cạnh của 1 tam giác cho trước nên suy ra  \(a,b,c>0\)

\(----------------\)

Áp dụng bất đẳng thức  \(AM-GM\)  cho hai số dương, ta có:

\(\frac{a^{2016}}{b+c-a}+\left(b+c-a\right)a^{2014}\ge2\sqrt{\frac{a^{2016}}{b+c-a}.\left(b+c-a\right)a^{2014}}=2a^{2015}\)

\(\Rightarrow\)  \(\frac{a^{2016}}{b+c-a}+a^{2014}b+ca^{2014}\ge3a^{2015}\)  \(\left(1\right)\)

Theo đó, ta cũng thiết lập tương tự hai bất đẳng thức mới bắt đầu với các hoán vị  \(b\rightarrow c\rightarrow a,\)   thu được:

\(\frac{b^{2016}}{c+a-b}+b^{2014}c+ab^{2014}\ge3b^{2015}\)  \(\left(2\right)\)

\(\frac{c^{2016}}{a+b-c}+c^{2014}a+bc^{2014}\ge3c^{2015}\)  \(\left(3\right)\)

Cộng ba bất đẳng thức  \(\left(1\right);\left(2\right)\)  và   \(\left(3\right),\) đồng thời chuyển vế,  khi đó bđt mới có dạng:

\(\frac{a^{2016}}{b+c-a}+\frac{b^{2016}}{c+a-b}+\frac{c^{2016}}{a+b-c}\ge3\left(a^{2015}+b^{2015}+c^{2015}\right)\) 

\(-\left[ab\left(a^{2013}+b^{2013}\right)+bc\left(b^{2013}+c^{2013}\right)+ca\left(c^{2013}+a^{2013}\right)\right]\)  \(\left(\alpha\right)\)

\(----------------\)

Mặt khác, lại theo bđt  \(AM-GM,\)   ta có:

\(\Omega_1:\)  \(2014a^{2015}+b^{2015}\ge2015\sqrt[2015]{\left(a^{2014}b\right)^{2015}}=2015a^{2014}b\)

\(\Omega_2:\)  \(2014b^{2015}+a^{2015}\ge2015\sqrt[2015]{\left(b^{2014}a\right)^{2015}}=2015b^{2014}a\)

Cộng từng vế của hai bđt ở trên và rút gọn, khi đó:     

\(a^{2015}+b^{2015}\ge a^{2014}b+b^{2014}a=ab\left(a^{2013}+b^{2013}\right)\)    \(\left(1^'\right)\)

Tương tự ta thực hiện các dãy biến đổi như trên, nhận được:  

\(b^{2015}+c^{2015}\ge bc\left(b^{2013}+c^{2013}\right)\)  \(\left(2^'\right)\)

\(c^{2015}+a^{2015}\ge ca\left(c^{2013}+a^{2013}\right)\)  \(\left(3^'\right)\)

Từ   \(\left(1^'\right);\left(2^'\right)\)  và  \(\left(3^'\right)\)  suy ra  \(2\left(a^{2015}+b^{2015}+c^{2015}\right)\ge\left[ab\left(a^{2013}+b^{2013}\right)+bc\left(b^{2013}+c^{2013}\right)+ca\left(c^{2013}+a^{2013}\right)\right]\)   \(\left(\beta\right)\)

\(----------------\)

\(\left(\alpha\right);\beta\)  \(\Rightarrow\)  \(đpcm\)

Dấu  \("="\)  xảy ra   \(\Leftrightarrow\)  \(a=b=c,\)   tức là tam giác khi đó phải là một tam giác đều!

1 tháng 3 2016

dùng đồng dư là ra mà

3 tháng 3 2016

thì cũng giống như 4 mũ 5 + 6 mũ 5 chia hết cho 5

12 tháng 8 2016

Ta có:

20152017 + 20172015

= 20152017 + 1 + 20172015 - 1

= (20152017 + 12017) + (20172015 - 12015)

Do 20152017 + 12017 luôn chia hết cho 2015 + 1 = 2016; 20172015 - 12015 luôn chia hết cho 2017 - 1 = 2016

=> (20152017 + 12017) + (20172015 - 12015) chia hết cho 2016

=> 20152017 + 20172015 chia hết cho 2016 (đpcm)

6 tháng 4 2020

TAU KHONG BIET

13 tháng 9 2021

\(201^2=\left(200+1\right)^2=200^2+2.200.1+1^2=40000+400+1=40401\)

\(498^2=\left(500-2\right)^2=500^2-2.500.2+2^2=250000-2000+4=248004\)

 

 

 

13 tháng 9 2021

\(93.107=\left(100-7\right)\left(100+7\right)=100^2-7^2=10000-49=9951\)

\(2016^2-2015.2017=2016^2-\left(2016-1\right)\left(2016+1\right)=2016^2-2016^2+1^2=1\)