Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi 3 số tự nhiên liên tiếp đó là n-1, n, n+1 (n thuộc N*)
Ta phải chứng minh A = (n-1)n(n+1) chia hết cho 6
n-1 và n là 2 số tự nhiên liên tiếp nên 1 trong 2 số phải chia hết cho 2
=> A chia hết cho 2
n-1, n và n+1 là 3 số tự nhiên liên tiếp nên 1 trong 3 số phải chia hết cho 3 => A chia hết cho 3 ( Đpcm)
Trong S1 có các số chia hết cho các thừa số ở S2
< = > S1 chia hết cho S2
=> ĐPCM
Mình làm b2) nha!!!
a) ab+ba=(10a+b)+(10b+a)
=11a+11b
=11.(a+b)
\(\Rightarrow\)ab+ba\(⋮\)11
b) ab-ba=(10a+b)-(10b+a)
=10a+b-10b-a
=(10a-a)+(b-10b)
=9a+(-9b)
=9a+9.(-b)
=9.(a-b)
\(\Rightarrow\)ab-ba\(⋮\)9
Học tốt nha^^
1. ta có aaabbb=100000a+10000a+1000a+100b+10b+b=111000a+111b.
111000a:111 vì có 111 còn những số 0 kia có chia cũng bằng 0
111b:111 vì 111 đã chia hết cho 111
=>aaabbb chia hết cho 111
ta co 2005 :9 dư 7
=>20052005:9 dư 7
1001:9 dư 2
=>1001+20052005:9 dư 0
=>đpcm