Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số có tận cùng là 3 khi nâng lên lũy thừa mũ 4n sẽ có tận cùng là 1
\(\Rightarrow43^{43}=43^{4.10+3}=\left(....1\right).\left(.....7\right)=\left(....7\right)\)
Số có tận cùng là 7 khi nâng lên lũy thừa mũ 4n sẽ có tận cùng là 1
\(\Rightarrow17^{17}=17^{4.4+1}=\left(....1\right).\left(....7\right)=\left(...7\right)\)
\(\Rightarrow43^{43}-17^{17}=\left(....7\right)-\left(....7\right)=\left(....0\right)\)
Vậy \(-0,7.\left(43^{43}-17^{17}\right)\)là 1 số nguyên
ta có 434 đồng dư với 1(mod 10)=>4340 đồng dư với 110,433 đồng dư với 7 (mod10)=> 4340 * 433 đồng dư với 1*7=7(mod10)
cs 174 đồng dư với 1(mod 7)=> 1716 đồng dư với 1 mod 7; 7 đồng dư vơi 7 mod 10=>1717 đồng dư với 7 mod 10
=>4343-1717 đồng dư với 7-7=0 mod 10 => 4343-1717 chia hết cho 10=> đpcm
10n + 53 = 10....0125 (có n - 3 chữ số 0)
Tổng các chữ số là 1 + 1 + 2 + 5 = 9 => chia hết cho 9
4343 = (....43)40.433 = (....1) . (....7) = .....7
1717 = (1716) . 17 = (....1) . 17 = ....7
.......7 - ( ...... 7 ) = ......0
Vậy chia hết cho 10
=> đpcm
/x-1/+5.(x+2)=5x-8 /x-1/+5x+10=5x-8 /x-1/+5x-5x=-18 /x-1/=-18=>x=-17 /x-1/=18=>x=19