Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
#include <bits/stdc++.h>
using namespace std;
long long n,i,x,dem;
int main()
{
cin>>n;
dem=0;
for (i=1; i<=n;i++)
{
cin>>x;
if (x<0) dem++;
}
cout<<dem;
return 0;
}
Bài 1:
Ý tưởng: Sau khi nhập bán kính r, chúng ta sẽ tính diện tích theo công thức \(S=r^2\cdot pi\)
Xác định bài toán
-Input: Bán kính r
-Output: Diện tích hình tròn có bán kính r
Mô tả thuật toán
-Bước 1: Nhập r
-Bước 2: \(s\leftarrow pi\cdot sqr\left(r\right)\)
-Bước 3: Xuất s
-Bước 4: Kết thúc
Bài 2:
Ý tưởng: Sau khi nhập cạnh a chúng ta sẽ tính chu vi hình vuông có cạnh a theo công thức \(S=4\cdot a\)
Xác định bài toán:
-Input: Cạnh a
-Output: Chu vi hình vuông có cạnh a
Mô tả thuật toán
-Bước 1: Nhập a
-Bước 2: s←a*4;
-Bước 3: Xuất s
-Bước 4: Kết thúc
#include <bits/stdc++.h>
using namespace std;
long long n,i,x,t;
int main()
{
cin>>n;
t=0;
for (i=1; i<=n; i++)
{
cin>>x;
if ((x<0) and (x%2!=0)) t=t+x;
}
cout<<t;
return 0;
}
+Xác định bài toán: (0,5đ)
- Input: n, dãy số A = { a 1 , a 2 , . . . , a n }
- Output: S=( a1 + a2 + … + an )
+ Thuật toán: (1,5đ)
Bước 1: Nhập n, và a 1 , a 2 , . . . , a n ; (0,5đ)
Bước 2: S ← 0; i ← 0;
Bước 3: i ← i + 1 ; (0,5đ)
Bước 4: Nếu i ⟨= n thì S ←S + ai ; và quay lại bước 3;
Bước 5: Thông báo kết quả S và kết thúc thuật toán. (0,5đ)
Bước 1: Nhập a và b
Bước 2: Xuất a-b
Bước 3: kết thúc
#include <bits/stdc++.h>
using namespace std;
int a[1000],i,n;
int main()
{
cin>>n;
for (i=1; i<=n; i++) cin>>a[i];
for (i=1; i<=n; i++) if (a[i]>0) cout<<i<<" ";
return 0;
}
def count_pairs_divisible_by_3(arr):
n = len(arr)
# Đếm số lượng số dư khi chia cho 3
count_mod = [0, 0, 0]
for num in arr:
count_mod[num % 3] += 1
# Trường hợp 0: Số dư 0 + Số dư 0
count_pairs = count_mod[0] * (count_mod[0] - 1) // 2
# Trường hợp 1: Số dư 1 + Số dư 2
count_pairs += count_mod[1] * count_mod[2]
# Trường hợp 2: Số dư 1 + Số dư 1 hoặc Số dư 2 + Số dư 2
count_pairs += count_mod[1] * (count_mod[1] - 1) // 2
count_pairs += count_mod[2] * (count_mod[2] - 1) // 2
return count_pairs
# Thử nghiệm
arr = [3, 5, 7, 9, 11, 13, 15]
result = count_pairs_divisible_by_3(arr)
print(f"Số lượng cặp số có tổng chia hết cho 3 là: {result}"
#include <bits/stdc++.h>
using namespace std;
long long x,i,n,dem;
int main()
{
cin>>n;
dem=0;
for (i=1; i<=n; i++)
{
cin>>x;
if (x<0) dem++;
}
cout<<dem;
return 0;
}
Bài 1.
Bước 1. Nhập N và dãy số \(a_1,a_2,...,a_N\)
Bước 2. \(i\leftarrow1\), \(S\leftarrow0\)
Bước 3. \(i\leftarrow i+1\)
Bước 4. 4.1 Nếu \(i>N\) thì kết thúc thuật toán và đưa ra kết quả.
4.2 \(a_i\ge0\) thì quay lại bước 3
4.3 \(S\leftarrow S+a_i\) rồi quay lại bước 3
Đáp án D