K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(P\cup Q\): Học sinh đó hoặc bị cận thị hoặc giỏi môn toán

PQ: Học sinh đó vừa bị cận thị vừa giỏi môn Toán

\(\overline{PQ}\): Học sinh đó vừa không bị cận thị vừa không giỏi môn Toán

Ở một trường trung học phổ thông X, có 19% học sinh học khá môn Ngữ văn, 32% học sinh học khá môn Toán, 7% học sinh học khá cả hai môn Ngữ văn và Toán. Chọn ngẫu nhiên một học sinh của trường X. Xét hai biến cố sau:A: “Học sinh đó học khá môn Ngữ văn”;B: “Học sinh đó học khá môn Toán”.a) Hoàn thành các mệnh đề sau bằng cách tìm cụm từ thích hợp thay cho dấu “?”.\(P\left( A \right)\) là tỉ lệ...
Đọc tiếp

Ở một trường trung học phổ thông X, có 19% học sinh học khá môn Ngữ văn, 32% học sinh học khá môn Toán, 7% học sinh học khá cả hai môn Ngữ văn và Toán. Chọn ngẫu nhiên một học sinh của trường X. Xét hai biến cố sau:

A: “Học sinh đó học khá môn Ngữ văn”;

B: “Học sinh đó học khá môn Toán”.

a) Hoàn thành các mệnh đề sau bằng cách tìm cụm từ thích hợp thay cho dấu “?”.

\(P\left( A \right)\) là tỉ lệ ...(?)...                                        

\(P\left( {AB} \right)\) là...(?)...
\(P\left( B \right)\) là ...(?)...                                               

\(P\left( {A \cup B} \right)\) là ...(?)...

b) Tại sao để tính \(P\left( {A \cup B} \right)\) ta không áp dụng được công thức \(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right)\)?

1
QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

a) \(P\left( A \right)\) là tỉ  lệ học sinh học khá môn Ngữ văn trong tổng số học sinh của trường X

\(P\left( B \right)\) là tỉ lệ học sinh học khá môn Toán trong tổng số học sinh của trường X

\(P\left( {AB} \right)\) là tỉ lệ học sinh học khá cả hai môn Ngữ văn và Toán trong tổng số học sinh của trường X

\(P\left( {A \cup B} \right)\)  là tỉ lệ học sinh học khá ít nhất một trong hai môn Ngữ văn và Toán trong tổng số học sinh của trường X

b) Ta không áp dụng được công thức \(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right)\) vì hai biến cố A và B không độc lập với nhau do học sinh học khá môn Ngữ Văn có thể cũng học khá môn Toán (7% học sinh học khá cả hai môn Ngữ văn và Toán)

QT
Quoc Tran Anh Le
Giáo viên
24 tháng 8 2023

a) A = {Dung, Long, Cường, Trang}

B = {Lan, Hương, Phúc, Cường, Trang}

C = {Dung, Long, Lan, Hương, Phúc, Cường, Trang}

b) A ∪ B = {Dung, Long, Cường, Trang, Lan, Hương, Phúc}

a: A={Dung, Long, Cường, Trang}

B={Lan, Hương, Phúc, Cường, Trang}

C={Dung, Long, Lan, Hương, Phúc, Cường, Trang}

b: A hợp B={Dung,Long,Cường,Trang,Phúc,Hương,Lan}

16 tháng 11 2018

Ta có n(Ω) = 40

a) Rõ ràng n(A) = 15 nên P(A) = 15/40 = 3/8

Chọn đáp án là C

19 tháng 9 2018

Ta có n(Ω) = 40

b) Rõ ràng n(B) = 10 nên P(B) = 10/40 =1/4

Chọn đáp án B

18 tháng 12 2018

Ta có n(Ω) = 40

c) Nhận thấy :

Mà P(A∪B) = P(A) + P(B) –P(A∩B), A∩B là biến cố:”học sinh được chọn giỏi cả Văn và Toán” nên n(A∩B)=5/40=1/8

Chọn đáp án C

Nhận xét:

ở ý a) và b) học sinh có thể nhầm khi quan niệm: chọn 1 học sinh nên n(A) =n(B) =1 ⇒ phương án A; hoặc chọn 1 học sinh trong 5 học sinh giỏi Toán và Văn nên n(A) =n(B) = 5

⇒ P(A) =P(B) =5/40=1/8 (phương án D); hoặc sử dụng nhầm công thức P(A) =(n(Ω))/(n(A))=8/3;P(B)=(n(Ω))/(n(B))=4 (phương án C)

ở ý c), học sinh có thể nhầm khi quan niệm:

Nhưng  A ¯   v à   B ¯ không phải là hai biến cố độc lập

Có thể giải ý c) cách khác như sau:

Số học sinh giỏi Văn và Toán gồm: học sinh giỏi Văn, học sinh hioir Toán, học sinh giỏi cả Văn và Toán nên bằng (15 +10) -5 = 20 em. Do đó, số học sinh không giỏi cả Toán và Văn là 40 – 20 = 20 em, nên n(C) = 20

Vì vậy P(C) =(n(C))/(n(Ω))=1/2

QT
Quoc Tran Anh Le
Giáo viên
25 tháng 8 2023

Cặp biến cố E và F không xung khắc vì nếu học sinh được chọn thích môn Bóng đá thì cả E và F có thể xảy ra vì có 2 bạn thích cả hai môn Bóng đá và Cầu lông.

Vì có 2 bạn cùng thích bóng đá và cầu lông

nên hai biến cố E và F không xung khắc

QT
Quoc Tran Anh Le
Giáo viên
24 tháng 8 2023

a) Không gian mẫu của bài toán này là tập hợp các học sinh trong tổ lớp, nó có 9 phần tử và được ký hiệu là Ω = {Hương, Hồng, Dung, Phương, Sơn, Tùng, Hoàng, Tiến, Hải}.

b) Biến cố H xảy ra khi học sinh được chọn là một bạn nữ, nó là tập hợp các học sinh nữ và được ký hiệu là

H = {Hương, Hồng, Dung, Phương}.

Biến cố K xảy ra khi học sinh được chọn có tên bắt đầu là chữ cái H, được ký hiệu là

K = {Hương, Hồng, Hoàng}.

Biến cố hợp M xảy ra khi học sinh được chọn là một bạn nữ hoặc có tên bắt đầu bằng chữ H, nó là tập hợp các học sinh trong tập H hoặc K (bao gồm cả những học sinh trùng nhau của hai tập này) và được ký hiệu là

M = H ∪ K = {Hương, Hồng, Dung, Phương, Hoàng}.

a: Ω={Hương, Hồng, Dung, Phương, Sơn, Tùng, Hoàng, Tiến, Hải}

n(Ω)=9

b: H={Hương, Hồng, Dung, Phương}

K={Hương, Hồng, Hoàng}

=>M={Hương,Hồng,Dung,Phương,Hoàng}

H là tập con của M và Ω

K là tập con của M và Ω

M là tập con của Ω

30 tháng 5 2017

Đáp án A

Số phần tử của không gian mẫu là

Gọi A là biến cố“3 học sinh được chọn luôn có học sinh chọn môn Vật lý và học sinh chọn môn Hóa học”.

Số phần tử của biến cố A là

Vậy xác suất cần tìm là