Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TXĐ: `D=RR\\{π/2+kπ ; -π/4 +kπ}`
Mà `-π/2+k2π` và `π/2+k2π \in π/2 +kπ`
`=>` Không nằm trong TXĐ.
Có thể giúp em được không ạ, em không hiểu ạ. Em xin lỗi và cảm ơn ạ.
\(y'=\dfrac{4.3}{8}.x^3+\dfrac{5.3}{6}x^2-\dfrac{2}{2\sqrt{x}}+3=\dfrac{3x^3}{2}+\dfrac{5x^2}{2}-\dfrac{1}{\sqrt{x}}+3\)
(Dòng khoanh đỏ ở dấu tương đương đầu tiên)Có nghĩa là chia cả hai vế cho \(\dfrac{5\pi}{3}\) ấy
(Dòng khoanh đỏ ở dấu tương đương thứ hai) Xét \(cos\pi x=\dfrac{1}{10}+k\dfrac{6}{5}\) (*)
Do \(-1\le cos\pi x\le1\)\(\Leftrightarrow-1\le\dfrac{1}{10}+k\dfrac{6}{5}\le1\)
\(\Leftrightarrow-\dfrac{11}{12}\le k\le\dfrac{3}{4}\) mà k nguyên \(\Rightarrow k=0\)
Thay k=0 vào (*)\(\Rightarrow cos\pi x=\dfrac{1}{10}\)
Làm tương tự với cái bên dưới \(-1\le\dfrac{1}{2}+k\dfrac{6}{5}\le1\) \(\Leftrightarrow-\dfrac{5}{4}\le k\le\dfrac{5}{12}\Rightarrow\left[{}\begin{matrix}k=0\\k=-1\end{matrix}\right.\)
Thay k=0 với k=-1 sẽ ra được \(\left[{}\begin{matrix}cos\pi x=\dfrac{1}{2}\\cos\pi x=-\dfrac{7}{10}\end{matrix}\right.\)
(Với mỗi \(cos\pi x\) sẽ nhận được hai họ nghiệm => Tổng tất cả là 6 họ nghiệm)
Vì \(cosx\in\left[-1;1\right]\Rightarrow\left[{}\begin{matrix}-1\le\dfrac{1}{10}+k\dfrac{6}{5}\le1\left(1\right)\\-1\le\dfrac{1}{2}+k\dfrac{6}{5}\le1\left(2\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow-\dfrac{11}{12}\le k\le\dfrac{9}{12}\Leftrightarrow k=0\Rightarrow cosx=\dfrac{1}{10}\)
\(\left(2\right)\Leftrightarrow-\dfrac{15}{12}\le k\le\dfrac{5}{12}\Leftrightarrow\left[{}\begin{matrix}k=0\\k=-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}cosx=\dfrac{1}{2}\\cosx=-\dfrac{7}{10}\end{matrix}\right.\)
\(sin\left(3x+\pi\right)=sin2x\)
\(\Leftrightarrow\left[{}\begin{matrix}3x+\pi=2x+k2\pi\\3x+\pi=\pi-2x+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-\pi+k2\pi\\x=\dfrac{k2\pi}{5}\end{matrix}\right.\)
(Lưu ý rằng \(x=-\pi+k2\pi\) và \(x=\pi+k2\pi\) là giống nhau về bản chất nên khi ghi nghiệm ghi là \(-\pi+k2\pi\) cũng được mà \(\pi+k2\pi\) cũng được)
Vậy hãy sử dụng 1 phương pháp giải khác tối ưu hơn:
\(\Leftrightarrow2sin^22x=1\)
\(\Leftrightarrow1-2sin^22x=0\)
\(\Leftrightarrow cos4x=0\)
\(\Leftrightarrow4x=\dfrac{\pi}{2}+k\pi\)
\(\Leftrightarrow x=\dfrac{\pi}{8}+\dfrac{k\pi}{4}\)
Với cách giải này thì nghiệm được gộp luôn
Đáp án: D
Vật liệu dùng để làm nam châm thường là các chất (hoặc các hợp chất của chúng): sắt, niken, côban, mangan, gađôlinium, disprôsium.
Câu 48: B
Câu 44: D