K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 2 2020

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}\\ \Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=1\\ \Rightarrow a=b=c=d\)

Vậy

\(M=\frac{2a-b}{c+d}+\frac{2b-c}{d+a}+\frac{2c-d}{a+b}+\frac{2d-a}{b+c}\\ =\frac{2a-a}{a+a}+\frac{2a-a}{a+a}+\frac{2a-a}{a+a}+\frac{2a-a}{a+a}\\ =\frac{a}{2a}+\frac{a}{2a}+\frac{a}{2a}+\frac{a}{2a}\\ =\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}\\ =\frac{1+1+1+1}{2}\\ =\frac{4}{2}=2\)

Vậy M=2

20 tháng 6 2017

Ta có : \(\frac{a}{b}=\frac{c}{d}\)

Suy ra : \(\frac{a}{c}=\frac{b}{d}=\frac{2017a}{2017c}=\frac{2017a-b}{2017c-d}\)

Nên : \(\frac{a}{c}=\frac{2017a-b}{2017c-d}\)

Do đó : \(\frac{2017a-b}{a}=\frac{2017c-d}{c}\) (đpcm)

20 tháng 6 2017

\(\frac{a}{b}=\frac{c}{d}\) \(\Rightarrow\frac{a}{c}=\frac{b}{d}\)

\(\Rightarrow\frac{2017a}{2017c}=\frac{b}{d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ,ta có :

\(\frac{2017a}{2017c}=\frac{b}{d}=\frac{2017a-b}{2017c-d}\)

\(\Rightarrow\frac{2017a-b}{2017c-d}=\frac{b}{d}=\frac{a}{c}\)

\(\Rightarrow\frac{2017a-b}{2017c-d}=\frac{a}{c}\)

\(\Rightarrow\frac{2017a-b}{a}=\frac{2017c-d}{c}\)

26 tháng 10 2015

a, Ta co : \(\frac{a}{b}=\frac{c}{d}\)\(\Rightarrow\)\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\)(1)

Xet :\(\frac{a}{a+b}=\frac{c}{c+d}\Rightarrow\frac{a}{c}=\frac{a+b}{c+d}\)(2)

Tu (1) va (2) \(\Rightarrow\frac{a}{a+b}=\frac{c}{c+d}\)

b

26 tháng 10 2015

trong sách nâng cao và phát triển đó

7 tháng 7 2015

đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)

\(\frac{a^2+c^2}{b^2+d^2}=\frac{\left(bk\right)^2+\left(dk\right)^2}{b^2+d^2}\frac{b^2k^2+d^2k^2}{b^2+d^2}=\frac{k^2.\left(b^2+d^2\right)}{b^2+d^2}=k^2\)

\(\frac{a.c}{b.d}=\frac{bk.dk}{b.d}=k^2\)

suy ra: \(\frac{a^2+c^2}{b^2+d^2}=\frac{a.c}{b.d}\)( cùng bằng k2)

19 tháng 12 2018

Dễ mà bạn!

Áp dụng t/c dãy tỉ số bằng nhau: \(\frac{a+b}{a+c}=\frac{a-b}{a-c}=\frac{a+b+a-b}{a+c+a-c}=\frac{2a}{2a}=1\)

\(\Rightarrow\hept{\begin{cases}a+b=a+c\\a-b=a-c\end{cases}\Leftrightarrow}b=c\)

Ta có: \(A=\frac{10b^2+9bc+c^2}{2b^2+bc+2c^2}=\frac{10b^2+9b^2+b^2}{2b^2+b^2+2b^2}=\frac{20b^2}{5b^2}=\frac{20}{5}=4\)

19 tháng 12 2018

Cách khác:

\(\frac{a+b}{a+c}=\frac{a-b}{a-c}\Leftrightarrow\left(a+b\right).\left(a-c\right)=\left(a-b\right).\left(a+c\right)\)

\(\Leftrightarrow a^2-ac+ab-bc=a^2+ac-ab-bc\Leftrightarrow-ac+ab=ac-ab\Rightarrow2ac=2ab\Rightarrow b=c\)(vì a.c khác 0)

\(A=\frac{10.c^2+9c^2+c^2}{2c^2+c^2+2c^2}=\frac{20c^2}{5c^2}=4\)