Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: H và I đối xứng nhau qua AB
nên AB là đường trung trực của HI
Suy ra: AH=AI và BH=BI
Xét ΔAHI có AH=AI
nên ΔAHI cân tại A
mà AB là đường trung trực ứng với cạnh đáy HI
nên AB là tia phân giác của \(\widehat{HAI}\)
Ta có: H và K đối xứng nhau qua AC
nên AC là đường trung trực của HK
Suy ra: AH=AK và CH=CK
Xét ΔAKH có AK=AH
nên ΔAKH cân tại A
mà AC là đường trung trực ứng với cạnh đáy HK
nên AC là tia phân giác của \(\widehat{KAH}\)
Ta có: \(\widehat{KAH}+\widehat{IAH}=\widehat{KAI}\)
\(\Leftrightarrow\widehat{KAI}=2\cdot\left(\widehat{BAH}+\widehat{CAH}\right)\)
\(\Leftrightarrow\widehat{KAI}=2\cdot90^0=180^0\)
Do đó: K,A,I thẳng hàng
a: Ta có: H và I đối xứng nhau qua AB
nên AB là đường trung trực của HI
Suy ra: AH=AI và BH=BI
Xét ΔAHI có AH=AI
nên ΔAHI cân tại A
mà AB là đường trung trực ứng với cạnh đáy HI
nên AB là tia phân giác của ˆHAIHAI^
Ta có: H và K đối xứng nhau qua AC
nên AC là đường trung trực của HK
Suy ra: AH=AK và CH=CK
Xét ΔAKH có AK=AH
nên ΔAKH cân tại A
mà AC là đường trung trực ứng với cạnh đáy HK
nên AC là tia phân giác của ˆKAHKAH^
Ta có: ˆKAH+ˆIAH=ˆKAIKAH^+IAH^=KAI^
⇔ˆKAI=2⋅(ˆBAH+ˆCAH)⇔KAI^=2⋅(BAH^+CAH^)
⇔ˆKAI=2⋅900=1800⇔KAI^=2⋅900=1800
Do đó: K,A,I thẳng hàng
a: Xét ΔABC có AI/AB=AK/AC
nên IK//BC
=>BIKC là hình thang
b: Xét tứ giác AHBM có
I là trung điểm chung của AB và HM
nên AHBM là hình bình hành
mà góc AHB=90 độ
nên AHBM là hình chữ nhật
c: Xét tứ giác ANHI có
O là trung điểm chung của AH và NI
AH vuông góc với NI
Do đó: ANHI là hình thoi
a: Ta có: H và I đối xứng nhau qua AB
nên AB là đường trung trực của HI
=>AH=AI
=>ΔAHI cân tại A
mà AB là đường cao
nên AB là phân giáccủa góc HAI(1)
Ta có: H và K đối xứng nhau qua AC
nên AC là đường trung trực của HK
=>AH=AK
=>ΔAHK cân tại A
mà AC là đường cao
nên AC là tia phân giác của góc HAK(2)
Từ (1) và (2) suy ra \(\widehat{KAI}=2\cdot\widehat{BAC}=180^0\)
hay K,A,I thẳng hàng
b: Xét ΔAHB và ΔAIB có
AH=AI
\(\widehat{HAB}=\widehat{IAB}\)
AB chung
Do đó: ΔAHB=ΔAIB
Suy ra: \(\widehat{AHB}=\widehat{AIB}=90^0\)
hay BI\(\perp\)KI(3)
Xét ΔAHC và ΔAKC có
AH=AK
\(\widehat{HAC}=\widehat{KAC}\)
AC chung
Do đó: ΔAHC=ΔAKC
Suy ra: \(\widehat{AHC}=\widehat{AKC}=90^0\)
hay CK\(\perp\)KI(4)
Từ (3) và (4) suy ra BI//CK
hay BIKC là hình thang
c: IK=KA+AI
nên IK=2AH
a: Xét tứ giác AKIH có
\(\widehat{AKI}=\widehat{AHI}=\widehat{HAK}=90^0\)
Do đó: AKIH là hình chữ nhật
a)Ta có
BK=KC (GT)
AK=KD( Đối xứng)
suy ra tứ giác ABDC là hình bình hành (1)
mà góc A = 90 độ (2)
từ 1 và 2 suy ra tứ giác ABDC là hình chữ nhật
b) ta có
BI=IA
EI=IK
suy ra tứ giác AKBE là hình bình hành (1)
ta lại có
BC=AD ( tứ giác ABDC là hình chữ nhật)
mà BK=KC
AK=KD
suy ra BK=AK (2)
Từ 1 và 2 suy ra tứ giác AKBE là hình thoi
c) ta có
BI=IA
BK=KC
suy ra IK là đường trung bình
suy ra IK//AC
IK=1/2AC
mà IK=1/2EK
Suy ra EK//AC
EK=AC
Suy ra tứ giác AKBE là hình bình hành