Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(D=\frac{\frac{2013}{2}+\frac{2013}{3}+\frac{2013}{4}+...+\frac{2013}{2014}}{\frac{2013}{1}+\frac{2012}{2}+\frac{2011}{3}+...+\frac{1}{2013}}\)
\(=\frac{2013\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2014}\right)}{\left(\frac{2012}{2}+1\right)+\left(\frac{2011}{3}+1\right)+...+\left(\frac{1}{2013}+1\right)+1}\)
\(=\frac{2013\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}\right)}{\frac{2014}{2}+\frac{2014}{3}+...+\frac{2014}{2013}+\frac{2014}{2014}}\)
\(=\frac{2013\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}\right)}{2014\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}\right)}\)
\(=\frac{2013}{2014}\)
\(S=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2011}-\frac{1}{2012}+\frac{1}{2013}\)
\(=\left(1+\frac{1}{3}+...+\frac{1}{2011}+\frac{1}{2013}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2012}\right)\)
\(=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}+\frac{1}{2013}-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2012}\right)\)
\(=1+\frac{1}{2}+...+\frac{1}{2012}+\frac{1}{2013}-\left(1+\frac{1}{2}+...+\frac{1}{1006}\right)\)
\(=\frac{1}{1007}+\frac{1}{1008}+...+\frac{1}{2012}+\frac{1}{2013}\)
=> S = P => (S - P)2013 = 0
\(S=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{2011}-\frac{1}{2012}+\frac{1}{2013}\)
\(\Rightarrow S=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2013}-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2012}\right)\)
\(\Rightarrow S=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2013}-1-\frac{1}{2}-\frac{1}{3}-...-\frac{1}{1006}\)
\(\Rightarrow S=\frac{1}{1007}+\frac{1}{1008}+...+\frac{1}{2012}+\frac{1}{2013}\)\(=P\)
\(\Rightarrow\left(S-P\right)^{2013}=0^{2013}=0\)
Tík cho mik nha!
Biển Cửa Lò, chùa Thiên mụ, núi Ngũ Hành Sơn, chùa Cầu Hội An, kinh thành Huế, đèo Hải Vân
🐼🐼🐼
Ta có:
\(S=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2013}\)
\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}+\frac{1}{2013}-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\frac{1}{8}+...+\frac{1}{2012}\right)\)
\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}+\frac{1}{2013}-1-\frac{1}{2}-\frac{1}{3}-\frac{1}{4}-...-\frac{1}{1006}\)
\(=\frac{1}{1007}+\frac{1}{1008}+\frac{1}{1009}+...+\frac{1}{2012}+\frac{1}{2013}\left(1\right)\)
Mà \(P=\frac{1}{1007}+\frac{1}{1008}+...+\frac{1}{2012}+\frac{1}{2013}\left(2\right)\)
Từ (1) và (2)\(\Rightarrow S=P\Rightarrow\left(S-P\right)^{2013}=0^{2013}=0\)
Vậy...
Mọi người tk mình đi mình đang bị âm nè!!!!!!
Ai tk mình mình tk lại nha !!!
xét mẫu ta được
(2012/2+1)+(2011/3+1)+...+(1/2013+1)
=2014/2+2014/3+...+2014/2013
=2014(1/2+1/3+...+1/2013) (1)
mà tử bằng 1/2+1/3+1/4+..+1/2013 (2)
(1),(2)=> A=1/2014
xét mẫu
2012+2012/2+2011/3+...+1/2013
=(1+1+1+…+1) + 2012/2+2011/3+...+1/2013
2012 số hạng
=(1 + 2012/2) + (1 + 2011/3) + ….+ (1+1/2013)
=2014/2 + 2014/3 + …. + 2014/2013
=2014 x (1/2 + 1/3 + … + 1/2013)
=))
(1/2+1/3+1/4+...+1/2013)/(2012+2012/2+2011/3+...+1/2013) =
(1/2+1/3+1/4+...+1/2013)/ 2014 x (1/2+1/3+1/4+...+1/2013) = 1/2014
TA TÁCH 2012 RA THÀNH 2012 CON SỐ 1.LẤY (1 + 2012/2) + (1 + 2011/3) + (1 + 2010/4); +...+ (1 + 1/2013) Ở MẪU, TA ĐƯỢC 2014/2 + 2014/3 +...+ 2014/2013(Ở MẪU).ĐẶT THỪA SỐ CHUNG 2014 RA NGOÀI TA SẼ ĐƯỢC 2014(1/2 + 1/3 +...+ 1/2013)(Ở MẪU).LẤY TỬ CHIA MẪU TA SẼ CÒN LẠI 1/2014. VẬY A=1/2014