K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

s=[1+2]+[2+2 mũ 2]+...+[2 mũ 6+2 mũ 7]

s=1 nhân [1+2]+2 nhân [1+2]+...+2 mũ 6 nhân [1+2]

s=[1+2] nhân[1+2+...+2 mũ 6

s=3 nhân [1+2+...+2 mũ 6]

=> s chia hết cho 3

25 tháng 10 2022

vì tổng của S chia hết cho 3 nên S chia hết cho 3. có thế cũng hỏi =))

Chúc bạn an toàn

22 tháng 12 2021

\(S=\left(1+2\right)+...+2^6\left(1+2\right)=3\left(1+...+2^6\right)⋮3\)

2 tháng 1 2022

S=(1+2)+...+2^6(1+2)=3(1+...+2^6)⋮3

23 tháng 12 2015

S = (1+ 2)+(22 + 23 )+( 24 + 27) + (26 + 25)

S=   3+45+51+51

S=3+3.15+3.17+3.17

S=3.(1+15+17.2): hết 3

tick nha nhanh nhất nè

AH
Akai Haruma
Giáo viên
28 tháng 12 2018

Lời giải:
\(P=1+2+22+23+24+25+26+27\)

\(=(22+23)+24+(25+2)+(26+1)+27\)

\(=45+24+27+27+27=3.15+3.8+3.27\)

\(=3(15+8+27)\vdots 3\)

28 tháng 12 2018

thank

1 tháng 9 2023

Bài 1

a, cm : A = 165 + 215 ⋮ 3

    A = 165 + 215

   A = (24)5 +  215

  A  = 220 + 215

 A  =  215.(25 + 1)

 A = 215. 33 ⋮ 3 (đpcm)

b,cm : B = 88 + 220 ⋮ 17

    B = (23)8 + 220 

    B =  216 + 220

    B = 216.(1 + 24)

    B = 216. 17 ⋮ 17 (đpcm)

 

 

  

1 tháng 9 2023

c, cm: C = 1 - 2 + 22 - 23 + 24 - 25 + 26 -...-22021 + 22022 : 6 dư 1

C=1+(-2+22-23+24- 25+26)+...+(-22017+22018-22019+22020-22021+22022)

C = 1 + 42 +...+ 22016.(-2 + 22 - 23 + 24 - 25 + 26)

C = 1 + 42+...+ 22016.42

C = 1 + 42.(20+...+22016)

42 ⋮ 6 ⇒ C = 1 + 42.(20+...+22016) : 6 dư 1 đpcm

          

17 tháng 3 2018

Ta có:

A = 2 + 22 + 23 + 24 + 25 + 26 + 27 + 28 + 29 + 210

= (2 + 22) + (23 + 24) + (25 + 26) + (27 + 28) + (29 + 210)

= 2 . (1 + 2) + 23 . (1 + 2) + 25 . (1 + 2) + 27 . (1 + 2) + 29 . (1 + 2)

= 2 . 3 + 23 . 3 + 25 . 3 + 27 . 3 + 29 . 3

= 3 . (2 + 23 + 25 + 27 + 29)

Vậy A ⋮ 3

19 tháng 12 2021

\(P=\left(1+2\right)+2^2\left(1+2\right)+...+2^{2020}\left(1+2\right)\)

\(=3\left(1+2^2+...+2^{2020}\right)⋮3\)

19 tháng 12 2021

\(P=\left(1+2\right)+2^2\left(1+2\right)+...+2^{2020}\left(1+2\right)\\ P=\left(1+2\right)\left(1+2^2+...+2^{2020}\right)=3\left(1+2^2+...+2^{2020}\right)⋮3\)