Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sin^2\alpha+\cos^2\alpha=1\)
\(\Rightarrow\sin^2\alpha+\left(\frac{7}{5}-\sin\alpha\right)^2=1\)
\(\Rightarrow25\sin^2\alpha-35\sin\alpha+12=0\)
\(\Rightarrow\left(5\sin\alpha-4\right)\left(5\sin\alpha-3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}\sin\alpha=\frac{4}{5}\\\sin\alpha=\frac{3}{5}\end{cases}}\)
Nếu \(\sin\alpha=\frac{4}{5}\)thì \(\cos\alpha=\frac{3}{5}\Rightarrow\tan\alpha=\frac{4}{3}\)
Nếu \(\sin\alpha=\frac{3}{5}\)thì \(\cos\alpha=\frac{4}{5}\Rightarrow\tan\alpha=\frac{3}{4}\)
Tk cho mk bạn nhá
a, ta có \(\tan\alpha=\frac{\sin\alpha}{\cos\alpha}\)
\(\frac{1}{3}\)= \(\frac{\sin\alpha}{\cos\alpha}\)
\(\cos\alpha\)= 3 \(\sin\alpha\)
ta có \(\frac{\cos\alpha+\sin\alpha}{\cos\alpha-\sin\alpha}\)= \(\frac{3\sin\alpha+\sin\alpha}{3\sin\alpha-\sin\alpha}\)= \(\frac{4\sin\alpha}{2\sin\alpha}\)= \(2\)
#mã mã#
a/ Có \(\tan\alpha=\frac{1}{3}\Rightarrow\frac{\sin\alpha}{\cos\alpha}=\frac{1}{3}\Leftrightarrow\cos\alpha=3\sin\alpha\)
Thay vào biểu thức có:
\(\frac{3\sin\alpha+\sin\alpha}{3\sin\alpha-\sin\alpha}=\frac{4\sin\alpha}{2\sin\alpha}=2\)
b/ Có \(\sin\alpha+\cos\alpha=\frac{7}{5}\Rightarrow\sin\alpha=\frac{7}{5}-\cos\alpha\) (1)
Có \(\sin^2\alpha+\cos^2\alpha=1\) (2)
Thay (1) vào (2) rồi tự thay số vào giải PTB2 để tìm cos và sin
Có \(\tan\alpha=\frac{\sin\alpha}{\cos\alpha}\)
Thay vào là OK
( sin a + cos a )^2 = (7/5)^2
=> sin^2 a + cos^2a + 2.sina . cos a = 49/25
=> 1 + 2.sin a . cos a = 49/25
=> 2.sin a + cos a = 49/25 - 1 = 24 / 25
( sin a - cos a )^2 = sin ^2 a + cos ^2a - 2. sin a . cos a = 1 - 24/25 = 1/25
=> sin a - cos a = 1/5 (2)
TA có sina + cos a = 7/5 (1)
Từ (1) và (1) => 2 sina = 8/5 => sin a = 8/5 : 2 = 8/10 = 4/5
=> cos a = sin a - 1/5 = 4/5 - 1/5 = 3/5
tan a = \(\frac{sina}{cosa}=\frac{\frac{4}{5}}{\frac{3}{5}}=\frac{4}{5}\cdot\frac{5}{3}=\frac{4}{3}\)
\(\frac{sin^2a-cos^2a+cos^4a}{cos^2a-sin^2a+sin^4a}=\frac{sin^2a-cos^2a\left(1-cos^2a\right)}{cos^2a-sin^2a\left(1-sin^2a\right)}=\frac{sin^2a-cos^2a.sin^2a}{cos^2a-sin^2a.cos^2a}\)
\(=\frac{sin^2a\left(1-cos^2a\right)}{cos^2a\left(1-sin^2a\right)}=\frac{sin^2a.sin^2a}{cos^2a.cos^2a}=tan^4a\)
\(sin^4a+cos^4a=\left(sin^2a+cos^2a\right)^2-sin^2a.cos^2a=1-2sin^2a.cos^2a\)
a) \(\frac{1-\cos\alpha}{\sin\alpha}=\frac{\sin\alpha}{1+\cos a}\)
\(\Leftrightarrow\left(1-\cos\alpha\right)\left(1+\cos\alpha\right)=\sin^2\alpha\)
\(\Leftrightarrow1-\cos^2\alpha=\sin^2\alpha\)
\(\Leftrightarrow\sin^2\alpha+\cos^2\alpha=1\)( luôn đúng )
\(\Rightarrow\frac{1-\cos\alpha}{\sin\alpha}=\frac{\sin\alpha}{1+\cos\alpha}\)
Mn trả lời nhanh nhanh giùm em với ạ. Em đang cần gấp...
- Ta có: \(\sin\alpha+\cos\alpha=\frac{7}{5}\)
\(\Rightarrow\sin\alpha=\frac{7}{5}-\cos\alpha\)
- Theo tỉ số lượng giác của óc nhọn, ta có:
\(\sin^2\alpha+\cos^2\alpha=1\)
\(\Leftrightarrow\left(\frac{7}{5}-\cos\alpha\right)^2+\cos^2\alpha=1\)
\(\Leftrightarrow\frac{49}{25}-\frac{14}{5}\cos\alpha+\cos^2\alpha+\cos^2\alpha=1\)
\(\Leftrightarrow50\cos^2\alpha-70\cos\alpha+48=0\)
\(\Leftrightarrow25\cos^2\alpha-35\cos\alpha+24=0\)
\(\Leftrightarrow\left(5\cos\alpha-4\right)\left(5\cos\alpha-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}5\cos\alpha-4=0\\5\cos\alpha-3=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\cos\alpha=\frac{4}{5}\\\cos\alpha=\frac{3}{5}\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}\sin\alpha=\frac{7}{5}-\cos\alpha=\frac{7}{5}-\frac{4}{5}=\frac{3}{5}\\\sin\alpha=\frac{7}{5}-\cos\alpha=\frac{7}{5}-\frac{3}{5}=\frac{4}{5}\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}\tan\alpha=\frac{\sin\alpha}{\cos\alpha}=\frac{\frac{3}{5}}{\frac{4}{5}}=\frac{3}{4}\\\tan\alpha=\frac{\sin\alpha}{\cos\alpha}=\frac{\frac{4}{5}}{\frac{3}{5}}=\frac{4}{3}\end{cases}}\)
Kết luận: Vậy..........