K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: ΔOCD cân tại O

mà OM là đường cao

nên M là trung điểm của CD

Xét tứ giác ACOD có

M là trung điểm chung của AO và CD

=>ACOD là hình bình hành

Hình bình hành ACOD có OC=OD

nên ACOD là hình thoi

b: ACOD là hình thoi

=>AC=CO=OD=DA

Xét ΔCOA có CA=CO

nên ΔCOA cân tại C

Xét ΔCOA cân tại C có OC=OA

nên ΔCOA đều

Ta có: ΔOCA đều

=>\(\widehat{CAO}=\widehat{COA}=\widehat{ACO}=60^0\)

Xét ΔCAM vuông tại M có \(sinCAM=\dfrac{CM}{CA}\)

=>\(\dfrac{CM}{5}=sin60=\dfrac{\sqrt{3}}{2}\)

=>\(CM=\dfrac{5\sqrt{3}}{2}\left(cm\right)\)

M là trung điểm của CD

=>\(CD=2\cdot CM=2\cdot\dfrac{5\sqrt{3}}{2}=5\sqrt{3}\left(cm\right)\)

7 tháng 12 2023

 mink xin hình vs ạ

 

AH
Akai Haruma
Giáo viên
4 tháng 1 2021

Lời giải:

a) Vì $OC=OD$ nên tam giác 4COD$ là tam giác cân tại $O$. Do đó đường cao $OI$ đồng thời là đường trung trực của $CD$ hay $AO$ là trung trực $CD$.

Vậy tứ giác $ACOD$ có 2 đường chéo $AO, CD$ thỏa mãn $AO$ là trung trực của $CD$ và $CD$ là trung trực của $AI$ nên $ACOD$ là hình thoi. 

b) $B\in AO$ và $AO$ là trung trực $CD$ nên $BC=BD(1)$

Áp dụng định lý Pitago:

$CD=2CI=2\sqrt{CO^2-IO^2}=2\sqrt{R^2-(\frac{R}{2})^2}=\sqrt{3}R$

$CB=\sqrr{CI^2+IB^2}=\sqrt{(\frac{\sqrt{3}}{2})^2+(\frac{3}{2})^2}=\sqrt{3}R$

$\Rightarrow CD=CB(2)$

Từ $(1);(2)\Rightarrow CD=CB=BD$ nên tam giác $BCD$ đều (đpcm)

c) 

Chu vi: $P=3CD=3\sqrt{3}R$ (đơn vị độ dài)

Diện tích: $S=\frac{BI.CD}{2}=\frac{\frac{3}{2}R.\sqrt{3}R}{2}=\frac{3\sqrt{3}R^2}{4}$ (đơn vị diện tích)

AH
Akai Haruma
Giáo viên
4 tháng 1 2021

Hình vẽ:

undefined

19 tháng 11 2023

a: ΔOCD cân tại O

mà OI là đường cao

nên I là trung điểm của CD

=>IC=ID

b: Xét tứ giác OCAD có

I là trung điểm chung của OA và CD

=>OCAD là hình bình hành

Hình bình hành OCAD có OC=OD

nên OCAD là hình thoi

c: Xét (O) có

ΔBCA nội tiếp

AB là đường kính

Do đó: ΔBCA vuông tại C

=>BC\(\perp\)CA(1)

CODA là hình thoi

=>DO//AC(2)

Từ (1),(2) suy ra DO\(\perp\)BC

d: OCAD là hình thoi

=>OC=CA=AD=OD

Xét ΔOCA có OC=CA=OA

nên ΔOCA đều

=>\(\widehat{CAO}=60^0\)

Ta có: ΔCBA vuông tại C

=>\(\widehat{CBA}+\widehat{CAB}=90^0\)

=>\(\widehat{CBA}=30^0\)

Xét ΔBCD có

BI là đường cao

BI là đường trung tuyến

Do đó:ΔBCD cân tại B

ΔBCD cân tại B

mà BI là đường cao

nên BI là phân giác của góc CBD

=>\(\widehat{CBD}=2\cdot\widehat{CBI}=2\cdot30^0=60^0\)

Xét ΔBCD cân tại B có \(\widehat{CBD}=60^0\)

nên ΔBCD đều

a: Xét ΔCAO có

CM vừa là đường cao, vừa là trung tuyến

=>ΔCAO cân tại C

=>CA=CO

ΔOCD cân tại O

mà OM là đường cao

nên M là trung điểm của CD

Xét tứ giác OCAD có

M là trung điểm chung của OA và CD

OC=CA

=>OCAD là hình thoi

b:

Xét (O) có

ΔACB nội tiếp

AB là đường kính

Do đó: ΔACB vuông tại C

=>góc CAB+góc CBA=90 độ

=>góc CBA=90-60=30 độ

Xét ΔBCD có

BM vừa là đường cao, vừa là trung tuyến

=>ΔBCD cân tại B

mà BM là đường cao

nên BM là phân giác của góc CBD

=>góc CBD=2*góc CBM=60 độ

=>ΔCBD đều

1/ Cho đường tròn (O) đường kính AB và 1 điểm C trên đường tròn.Từ O kẻ 1 đường thảng song song với dây AC , đường thảng này cắt tiếp tuyến tại B của đường tròn ở điển C A) CM: OD là phân giác của góc BOC b) CN: CD là tiếp tuyến của đường tròn2/ Cho đường tròn (O;R), H là điểm bên trong đường tròn (H không trùng với O). Vẽ đưởng kính AB đi qua H (HB < HA). Vẽ dây CD vuông góc với AB...
Đọc tiếp

1/ Cho đường tròn (O) đường kính AB và 1 điểm C trên đường tròn.Từ O kẻ 1 đường thảng song song với dây AC , đường thảng này cắt tiếp tuyến tại B của đường tròn ở điển C A) CM: OD là phân giác của góc BOC b) CN: CD là tiếp tuyến của đường tròn

2/ Cho đường tròn (O;R), H là điểm bên trong đường tròn (H không trùng với O). Vẽ đưởng kính AB đi qua H (HB < HA). Vẽ dây CD vuông góc với AB tại H. CMR:
a) Góc BCA = 90 độ           b) CH . HD = HB . HA       c) Biết OH = R/2. Tính diện tích  tam giác ACD theo R

3/ Cho tam giác MAB,  vẽ đường tròn (O) đường kính AB cắt MA ở C,  cắt MB ở D. Kẻ AP vuông góc CD , BQ cuông góc CD. Gọi H là giao điểm AD và BC. CM: 
a) CP = DQ                    b) PD . DQ = PA . BQ và QC . CP = PD . QD                 c) MH vuông góc AB\

4/ Cho đường tròn (O;5cm) đường kính AB,  gọi E là 1 điểm trên AB sao cho BE = 2cm.Qua trung điểm kH của đoạn AE vẽ dây cung CD vuông góc AB.
a) Tứ giác ACED là hình gì? Vì sao?                b)Gọi I là giao điểm của DE với BC. CMR:I thuộc đường tròn (O') đường kính EB
c) CM HI là tiếp điểm của đường tròn (O')          d) Tính độ dài đoạn HI

5/ Cho đường tròn (0) đường kính AB = 2R. Gọi I là trung điểm của AO, qua I kẻ dây CD vuông góc với OA.
a) Tứ giác ACOD là hình gì? tại sao?   
b) CM tam giác BCD đều
c) Tính chu vi và diện tích tam giác BCD theo R

6/ Cho tam giác ABC vuông tại A có đường cao AH. Biết AB = 9cm; BC = 15cm
a) Tính độ dài các cạnh AC, AH, BH, HC
b) Vẽ đường tròn tâm B, bán kính BA. Tia AH cắt (B) tại D. CM: CD là tiếp tuyến của (B;BA)
c) Vẽ đường kính DE. CM: EA // BC
d) Qua E vẽ tiếp tuyến d với (B). Tia CA cắt d tại F, EA cắt BF tại G. CM: CF = CD + EF và tứ giác AHBG là hình chữ nhật

7/ Cho đường tròn (O) đường kính AB, điểm M thuộc đường tròn. Vẽ điểm N đối xứng với A qua M. BN cắt đường tròn ở C. gọi E là giao điểm của AC và BM.
a) CMR: NE vuông góc AB
b) Gọi F là điểm đối xứng với E qua M. CMR: FA là tiếp tuyến của đường tròn (O)
c) CM: FN là tiếp tuyến của đường tròn (B;BA)

8/ Cho nửa đường tròn (O), đường kính AB.Từ một điểm M trên nửa đường tròn ta vẽ tiếp tuyến xy. Từ A ta vẽ AD vuông góc với xy tại D
a) CM: AD // OM
b) Kẻ BC vuông góc với xy tại C. CMR: MC = MD
 

2
18 tháng 9 2016

Cần giải thì liên lạc face 0915694092 nhá

7 tháng 12 2017

giúp tôi trả lời tất cả câu hỏi đề này cái

8 tháng 3 2020

Bạn tự vẽ hình nha.

a, Xét (O) có OA vuông góc với CD tại I suy ra I là trung điểm CD.

Khi đó tứ giác ACOD có 2 đường chéo vuông góc với nhau và cắt nhau tại trung điểm mỗi đường nên tứ giác ACOD là hình thoi.

b, Do C thuộc đường tròn đường kính AB nên \(\widehat{ACB}=90^o\)

Xét \(\Delta ACB\)vuông tại C có CI là đường cao nên: \(CI^2=AI.IB\Rightarrow\left(2CI\right)^2=4AI.IB\Leftrightarrow CD^2=4AI.IB\left(đpcm\right)\)