Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(y=f\left(x\right)=\dfrac{x-1}{x-2}\)
a)
\(y=f\left(1\right)=\dfrac{1-1}{1-2}=\dfrac{0}{-1}=0\)
\(y=f\left(-1\right)=\dfrac{\left(-1\right)-1}{\left(-1\right)-2}=\dfrac{-1-1}{-1-2}=\dfrac{-\left(1+1\right)}{-\left(1+2\right)}=\dfrac{-2}{-3}=\dfrac{2}{3}\)
\(y=f\left(0\right)=\dfrac{0-1}{0-2}=\dfrac{-1}{-2}=\dfrac{1}{2}\)
a) Thay x=-2 vào hàm số \(f\left(x\right)=2x^2-5\),ta được:
\(f\left(-2\right)=2\cdot\left(-2\right)^2-5=2\cdot4-5=8-5=3\)
Thay x=1 vào hàm số \(f\left(x\right)=2x^2-5\), ta được:
\(f\left(1\right)=2\cdot1^2-5=2-5=-3\)
Thay x=3 vào hàm số \(f\left(x\right)=2x^2-5\), ta được:
\(f\left(3\right)=2\cdot3^2-5=2\cdot9-5=18-5=13\)
Vậy: f(-2)=3
f(1)=-3
f(3)=13
b) Để f(x)=3 thì \(2x^2-5=3\)
\(\Leftrightarrow2x^2=8\)
\(\Leftrightarrow x^2=4\)
hay \(x\in\left\{2;-2\right\}\)
Vậy: Để f(x)=3 thì \(x\in\left\{2;-2\right\}\)
a) \(f\left(x\right)=\frac{x+2}{x-1}\)
\(f\left(x\right)=\frac{1}{4}\Leftrightarrow\frac{x+2}{x-1}=\frac{1}{4}\)
\(\Leftrightarrow4\left(x+2\right)=x-1\)
\(\Leftrightarrow4x+8=x-1\)
\(\Leftrightarrow4x-x=-1-8\)
\(\Leftrightarrow3x=-9\)
\(\Leftrightarrow x=-3\)
Vậy x = -3 thì hàm số y = f(x) = \(\frac{1}{4}\)
b) \(f\left(x\right)=\frac{x+2}{x-1}=\frac{x-1+3}{x-1}=1+\frac{3}{x-1}\)
Để f(x) nguyên thì \(\frac{3}{x-1}\)nguyên
hay \(3⋮\left(x-1\right)\Leftrightarrow x-1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
Lập bảng:
\(x-1\) | \(1\) | \(-1\) | \(3\) | \(-3\) |
\(x\) | \(2\) | \(0\) | \(4\) | \(-2\) |
Vậy \(x\in\left\{2;0;4;-2\right\}\) thì f(x) nguyên
a) Ta có: f(x) = 1/4
=> \(\frac{x+2}{x-1}=\frac{1}{4}\)
=> \(4\left(x+2\right)=x-1\)
=> 4x + 8 = x - 1
=> 4x - x = -1 - 8
=> 3x = -9
=> x = -3
b) Ta có: \(f\left(x\right)=\frac{x+2}{x-1}=\frac{\left(x-1\right)+3}{x-1}=1+\frac{3}{x-1}\)
Để f(x) có giá trị nguyên <=> \(3⋮x-1\) <=> \(x-1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
Lập bảng :
x - 1 | 1 | -1 | 3 | -3 |
x | 2 | 0 | 4 | -2 |
Vậy ...
a. Để \(\frac{x+2}{x-1}\) có nghĩa thì \(x-1\ne0\Leftrightarrow x\ne1\)
b. Thay số vào rồi tính là ra nhé bạn.
c. \(f\left(x\right)=\frac{1}{4}\)
\(\frac{x+2}{x-1}=\frac{1}{4}\)
4(x + 2) = x - 1
4x + 8 = x - 1
4x - x = -1 - 8
3x = -9
x = -3
d. \(f\left(x\right)\in Z\)
\(\Rightarrow\frac{x+2}{x-1}\in Z\)
\(\Rightarrow\frac{x-1+3}{x-1}\in Z\)
\(\Rightarrow1+\frac{3}{x-1}\in Z\)
\(\Rightarrow\frac{3}{x-1}\in Z\)
Để \(\frac{3}{x-1}\in Z\) thì \(3⋮x-1\Leftrightarrow x-1\inƯ\left(3\right)=\left\{\text{±}1;\text{±}3\right\}\)
Ta có bảng sau:
x - 1 | -1 | -3 | 1 | 3 |
x | 0 | -2 | 2 | 4 |
Vậy để f(x) có giá trị nguyên thì \(x\in\left\{-2;0;2;4\right\}\)
e. f(x) > 0
\(\Leftrightarrow\frac{x+2}{x-1}>0\)
\(\Rightarrow1+\frac{3}{x-1}>0\)
\(\Rightarrow\frac{3}{x-1}>-1\)
\(\Rightarrow x-1>-3\)
\(\Rightarrow x>-2\)
a) có nghĩa khi \(x-1\ne0\Rightarrow x\ne1\)
b)\(f\left(7\right)=\frac{7+2}{7-1}=\frac{9}{6}\)
c)\(f\left(x\right)=\frac{x+2}{x-1}=\frac{1}{4}\Leftrightarrow x+2=4x-4\)
\(\Leftrightarrow-3x=-6\Leftrightarrow x=2\)
e)\(f\left(x\right)>1\Rightarrow\frac{x+2}{x-1}-1>0\)
\(\Rightarrow\frac{3}{x-1}>0\) thấy 3>0 nên x-1>0 =>x>1
Bài 2:
a)\(P=9-2\left|x-3\right|\)
Thấy: \(\left|x-3\right|\ge0\)\(\Rightarrow2\left|x-3\right|\ge0\)
\(\Rightarrow-2\left|x-3\right|\le0\)
\(\Rightarrow9-2\left|x-3\right|\le9\)
Khi x=3
b)Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(Q=\left|x-2\right|+\left|x-8\right|\)
\(=\left|x-2\right|+\left|8-x\right|\)
\(\ge\left|x-2+8-x\right|=6\)
Khi \(2\le x\le8\)
a: \(f\left(1\right)=\dfrac{1-1}{1-2}=-1\)
\(f\left(-1\right)=\dfrac{-1-1}{-1-2}=-\dfrac{2}{-3}=\dfrac{2}{3}\)
\(f\left(0\right)=\dfrac{0-1}{0-2}=\dfrac{1}{2}\)
\(f\left(2\right)=\dfrac{2-1}{2-2}=\varnothing\)
b: f(x)=2 nên x-1=2x-4
=>2x-4=x-1
=>x=3
c: Để y là số ngyên thì \(x-2+1⋮x-2\)
\(\Leftrightarrow x-2\in\left\{1;-1\right\}\)
hay \(x\in\left\{3;1\right\}\)