Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=\frac{x}{x+y+z}+\frac{y}{x+y+t}+\frac{z}{y+z+t}+\frac{t}{x+z+t}\).Vì x,y,z,t E N nên:
\(\frac{x}{x+y+z+t}<\frac{x}{x+y+z}<\frac{x}{x+y}\)
\(\frac{y}{x+y+z+t}<\frac{y}{x+y+t}<\frac{y}{x+y}\)
\(\frac{z}{x+y+z+t}<\frac{z}{y+z+t}<\frac{z}{z+t}\)
\(\frac{t}{x+y+z+t}<\frac{t}{x+z+t}<\frac{t}{z+t}\)
do đó \(\frac{x}{x+y+z+t}+\frac{y}{x+y+z+t}+\frac{z}{x+y+z+t}+\frac{t}{x+y+z+t}\)<A<\(\left(\frac{x}{x+y}+\frac{y}{x+y}\right)+\left(\frac{z}{z+t}+\frac{t}{z+t}\right)\)
<=>1<A<2
vậy A ko phải là số nguyên
Ta có:
1-z/x=x/x-z/x=(x-z)/x(1)
1-x/y=y/y-x/y=(y-x)/y(2)
1+y/z=z/z+y/z=(y+z)/z(3)
Mà x-y-z=0( theo đề)
=>x-z=y(*)
x-y=z=>y-x=-z ( số đối) (**)
y+z=x(***)
Thay (*),(**),(***) lần lượt vào (1),(2),(3) ta đc:
A=(1-z/x)(1-x/y)(1+y/z)=(x-z)/x.(y-x)/y.(z+y)/z=y/x.(-z/y).x/z
=y.(-z).x/x.y.z=y.z.(-1).x/x.y.z=-1
Vậy A=-1
\(M>\frac{x}{x+y+z+t}+\frac{y}{x+y+z+t}+\frac{z}{x+y+z+t}+\frac{t}{x+y+z+t}=\frac{x+y+z+t}{x+y+z+t}=1\)
Mà \(\frac{a}{b}<1\) thì \(\frac{a}{b}<\frac{a+m}{b+m}\) ; \(m\in N\)*
Do đó \(M<\frac{x+t}{x+y+z+t}+\frac{y+z}{x+y+z+t}+\frac{z+x}{x+y+z+t}+\frac{t+y}{x+y+z+t}=\frac{2\left(x+y+z+t\right)}{x+y+z+t}=2\)
Vậy 1 < M < 2 nên M không phải là số tự nhiên/