Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
từ biểu thức đã cho , ta thấy các phân số bằng nhau .
Có 2 dạng bằng nhau :
- cũng mẫu và tử
- nhân hay chia mẫu và tử cho một số thì được phân số đã cho
Nếu ta lấy cách 1 , cũng mẫu và tử thì có :
y = z = t = x
Vậy có biểu thức phía dưới bằng :
1 + 1 + 1 + 1 = 4
Vậy theo cách là các phân số này cùng có mẫu và tử giống nhau thì phân số này bằng 4
còn theo cách kia tớ không biết giải
Nếu x+y+z+t = 0 => x+y = -(z+t) ; y+z = -(x+t) ; z+t = -(y+x) ; t+x = -(z+y)
=> Biểu thức = -1-1-1-1 = -4
Nếu x+y+z+t khác 0 thì :
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
x/y+z+t = y/z+t+x = z/t+x+y = t/x+y+z = x+y+z+t/3x+3y+3z+3t = 1/3
=> x=1/3.(y+z+t) ; y = 1/3.(z+t+x) ; z = 1/3.(t+x+y) ; t = 1/3.(x+y+z)
=> x=y=z=t
=> A = 1+1+1+1 = 1
Vậy ...........
k mk nha
\(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}\)
\(\Leftrightarrow1+\frac{y+z+t}{x}=1+\frac{z+t+x}{y}=1+\frac{t+x+y}{z}=1+\frac{x+y+z}{t}\)
\(\Leftrightarrow\frac{x+y+z+t}{x}=\frac{x+y+z+t}{y}=\frac{x+y+z+t}{z}=\frac{x+y+z+t}{t}\)
\(TH1:x+y+z+t=0\left(ĐK:x,y,z,t\ne0\right)\)
\(\Rightarrow\hept{\begin{cases}x+y=-\left(z+t\right)\\y+z=-\left(x+t\right)\end{cases}\Rightarrow P=\frac{-\left(z+t\right)}{z+t}+\frac{-\left(x+t\right)}{x+t}+\frac{z+t}{-\left(z+t\right)}+\frac{t+x}{-\left(y+z\right)}}\)=-4
\(TH2:x+y+z+t\ne0\)
\(\Rightarrow x=y=z=t\Rightarrow P=\frac{x+x}{x+x}+\frac{x+x}{x+x}+\frac{x+x}{x+x}+\frac{x+x}{x+x}=4\)
Vậy P=4 hay P=-4
Trả lời :..................................
P = 4,..................................
Hk tốt......................................
TA CÓ : ( x / y + z + t ) + 1 = ( y / z +t + x ) + 1 = ( t / x + y + z ) + 1
Suy ra : x+y+z+t / y+z+t = x+y+z+t / z+t+x = x+y+z+t / t+x+y = x+y+z+t / x+y+z
do x+y+z+t khác 0 suy ra x=y=z=t suy ra M= 1+1+1+1 =4 tích đúng nha
Ta có:
\(\frac{y+z+t}{x}=\frac{z+t+x}{y}=\frac{t+x+y}{z}=\frac{x+y+z}{t}\)
\(=\frac{2\left(x+y+z+t\right)}{x+y+z+t}\left(tcdtsbn\right)\)=2
\(\Rightarrow y+z+t=2x;z+t+x=2y;\)
\(t+x+y=2z;x+y+z=2t\)
Tu do de CM x=y=z=t
Khi do
\(A=1+1+1+1=4\)
Xet \(x+y+z+t=0\)
\(\Rightarrow A=\frac{x+y}{z+t}+\frac{y+z}{t+x}+\frac{z+t}{x+y}+\frac{t+x}{y+z}=-1-1-1-1=-4\)
Xet \(x+y+z+t\ne0\)
\(\Rightarrow\frac{y+z+t}{x}=\frac{z+t+x}{y}=\frac{t+x+y}{z}=\frac{x+y+z}{t}=\frac{3\left(x+y+z+t\right)}{x+y+z+t}=3\)
\(\Rightarrow x=y=z=t\ne0\)
\(\Rightarrow A=4\)
+, Nếu x+y+z+t = 0 => M = -1 + (-1) + (-1) + (-1) = -4
+, Nếu x+y+z+t khác 0 thì :
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
x/y+z+t = y/x+z+t = z/x+t+y = t/x+y+z = x+y+z+t/3x+3y+3z+3t = 1/3
=> x=1/3.(y+z+t) ; y=1/3.(z+x+t) ; z=1/3.(x+y+t) ; t=1/3.(x+y+z)
=> x=y=z=t
=> M = 1+1+1+1 = 4
Tk mk nha
\(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{x+t+y}=\frac{t}{x+y+z}\)
\(\Rightarrow\frac{x}{y+z+t}+1=\frac{y}{z+t+x}+1=\frac{z}{x+t+y}+1=\frac{t}{x+y+z}+1\)
\(\Rightarrow\frac{x+y+z+t}{y+z+t}=\frac{x+y+z+t}{z+t+x}=\frac{x+y+z+t}{x+t+y}=\frac{x+y+z+t}{x+y+z}\)
+) Xét x + y + z + t= 0 => x + y = -(z+t) ; y + z = -(x+t); z+t = -(x+y); t+x = -(y+z)
\(\Rightarrow M=\frac{-\left(z+t\right)}{z+t}+\frac{-\left(x+t\right)}{t+x}+\frac{-\left(x+y\right)}{x+y}+\frac{-\left(y+z\right)}{y+z}=\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)=-4\)
+) Xét x+y+z+t khác 0 => x=y=z=t
\(\Rightarrow M=1+1+1+1=4\)
\(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}\)
\(=\frac{x+y+z+t}{y+z+t+z+t+x+t+x+y+x+y+z}=\frac{x+y+z+t}{3x+3y+3z+3t}\)
\(=\frac{x+y+z+t}{3\left(x+y+z+t\right)}=\frac{1}{3}\)
\(\Rightarrow x=y=z=t\)
\(=\frac{x+y}{z+t}+\frac{y+z}{x+t}+\frac{z+t}{x+y}+\frac{x+t}{x+z}=\frac{x+x}{x+x}+\frac{y+y}{y+y}+\frac{z+z}{z+z}+\frac{t+t}{t+t}=4\)
vì sao x=y=z=t