Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(x;y;z;t\in N\)* nên ta có :
\(\frac{x}{x+y+z+t}< \frac{x}{x+y+z}< \frac{x+t}{x+y+z+t}\)
\(\frac{y}{x+y+z+t}< \frac{y}{x+y+t}< \frac{y+z}{x+y+z+t}\)
\(\frac{z}{x+y+z+t}< \frac{z}{y+z+t}< \frac{z+x}{x+y+z+t}\)
\(\frac{t}{x+y+z+t}< \frac{t}{x+z+t}< \frac{t+y}{x+y+z+t}\)
Cộng vế với vế ta được :
\(\frac{x+y+z+t}{x+y+z+t}< \frac{x}{x+y+z}+\frac{y}{x+y+t}+\frac{z}{y+z+t}+\frac{t}{x+z+t}< \frac{2\left(x+y+z+t\right)}{x+y+z+t}\)
\(\Rightarrow1< M< 2\)
=> M có giá trị không phải là số tự nhiên
Với\(x,y,z,t\in\)N*,ta có :\(\frac{x}{x+y+z+t}< \frac{x}{x+y+z}< \frac{x}{x+y}\left(1\right)\)
\(\frac{y}{x+y+z+t}< \frac{y}{x+y+t}< \frac{y}{x+y}\left(2\right);\frac{z}{x+y+z+t}< \frac{z}{y+z+t}< \frac{z}{z+t}\left(3\right)\)
\(\frac{t}{x+y+z+t}< \frac{t}{x+z+t}< \frac{t}{z+t}\left(4\right)\)
Cộng (1),(2),(3),(4),vế theo vế,ta có :\(\frac{x+y+z+t}{x+y+z+t}< M< \frac{x+y}{x+y}+\frac{z+t}{z+t}\)hay 1 < M < 2
Vậy M không phải là số tự nhiên
\(3\left(x-5\right)^2-5=22\)
\(3\left(x-5\right)^2=22+3\)
\(\left(x-5\right)^2=27.3\)
\(\left(x-5\right)^2=81\)
\(\left(x-5\right)^2=9^2\)
\(\left(x-5\right)=9\)
\(x=9+5\)
\(x=14\)
Đúng nha
\(3\left(x-5\right)^2-5=22\)
\(3\left(x-5\right)^2=22+5\)
\(3\left(x-5\right)^2=27\)
\(\left(x-5\right)^2=27:3\)
\(\left(x-5\right)^2=9\)
\(\left(x-5\right)^2=3^2\)
\(x-5=3\)
\(x=3+5\)
\(x=8\)
Ta có:\(\frac{x}{x+y+z}< \frac{x+t}{x+y+z+t};\frac{y}{x+y+t}< \frac{y+z}{x+y+z+t};\frac{z}{y+z+t}< \frac{z+x}{x+y+z+t};\frac{t}{x+z+t}< \frac{t+y}{x+y+z+t}\)
Khi đó:\(M< \frac{x+t}{x+y+z+t}+\frac{y+z}{x+y+z+t}+\frac{z+x}{x+y+z+t}+\frac{t+y}{x+y+z+t}\)
\(=\frac{2\left(x+y+z+t\right)}{x+y+z+t}\)
\(=2\)
\(\Rightarrow M^{10}< 2^{10}=1024< 2020\)
Vậy ta có điều fải chứng minh :D
Vì x, y, z, t thuộc N* nên :
\(\frac{x}{x+y+z+t}< \frac{x}{x+y+z}< \frac{x}{x+y}\left(1\right)\)
\(\frac{y}{x+y+z+t}< \frac{y}{z+y+t}< \frac{y}{x+y}\left(2\right)\)
\(\frac{z}{x+y+z+t}< \frac{z}{y+z+t}< \frac{z}{z+t}\left(3\right)\)
\(\frac{t}{x+y+z+t}< \frac{t}{x+z+t}< \frac{t}{x+y}\left(4\right)\)
Từ (1) (2) (3) và (4)
\(\Rightarrow\frac{x+y+z+t}{x+y+z+t}< M< \frac{x+y}{x+y}+\frac{z+t}{z+t}\)
\(\Rightarrow1< M< 2\)
\(\Rightarrow M\) không phải là số tự nhiên
Cái chỗ (4) là \(\frac{t}{x+y+z+t}< \frac{t}{x+z+t}< \frac{t}{z+t}\)nha mình nhầm
Ta có :
\(\frac{x}{x+y+z}>\frac{x}{x+y+z+t}\)\(;\)\(\frac{y}{x+y+t}>\frac{y}{x+y+z+t}\)\(;\)\(\frac{z}{y+z+t}>\frac{z}{x+y+z+t}\)\(;\)\(\frac{t}{x+z+t}>\frac{t}{x+y+z+t}\)
\(\Rightarrow\)\(M=\frac{x}{x+y+z}+\frac{y}{x+y+t}+\frac{z}{y+z+t}+\frac{t}{x+z+t}>\frac{x}{x+y+z+t}+\frac{y}{x+y+z+t}+\frac{z}{x+y+z+t}\)
\(+\frac{t}{x+y+z+t}=\frac{x+y+z+t}{x+y+z+t}=1\)
Suy ra \(M>1\)\(\left(1\right)\)
Lại có :
\(\frac{x}{x+y+z}< \frac{x+t}{x+y+z+t}\)\(;\)\(\frac{y}{x+y+t}< \frac{y+z}{x+y+z+t}\)\(;\)\(\frac{z}{y+z+t}< \frac{z+x}{x+y+z+t}\)\(;\)\(\frac{t}{x+z+t}< \frac{t+y}{x+y+z+t}\)
\(\Rightarrow\)\(M=\frac{x}{x+y+z}+\frac{y}{x+y+t}+\frac{z}{y+z+t}+\frac{t}{x+z+t}< \frac{x+t}{x+y+z+t}+\frac{y+z}{x+y+z+t}+\frac{z+x}{x+y+z+t}\)\(+\frac{t+y}{x+y+z+t}=\frac{x+t+y+z+z+x+t+y}{x+y+z+t}=\frac{2x+2y+2z+2t}{x+y+z+t}=\frac{2\left(x+y+z+t\right)}{x+y+z+t}=2\)
Suy ra \(M< 2\)\(\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) suy ra \(1< M< 2\)
Vậy \(M\) không là số tự nhiên
biến đổi ntn nè x/x+y+z+t + x/x+y+z+t + z/y+z+t + t/x+t+z bạn lm tiếp đi dễ mà dài
Có: \(\frac{x}{x+y+z}>\frac{x}{x+y+z+t}\)
\(\frac{y}{x+y+t}>\frac{y}{x+y+z+t}\)
\(\frac{z}{y+z+t}>\frac{z}{x+y+z+t}\)
\(\frac{t}{x+t+z}>\frac{t}{x+y+z+t}\)
=> \(\frac{x}{x+y+z}+\frac{y}{x+y+t}+\frac{z}{y+z+t}+\frac{t}{x+t+z}>\frac{x}{x+y+z+t}+\frac{y}{x+y+z+t}+\frac{z}{x+y+z+t}+\frac{t}{x+y+z+t}\)
=> \(M>\frac{x+y+z+t}{x+y+z+t}=1\)
=> \(M>1\)(1)
Ta có: \(\frac{a}{b}< \frac{a+m}{b+m};\forall m\inℕ^∗\)
=> \(\frac{x}{x+y+z}< \frac{x+t}{x+y+z+t}\)
\(\frac{y}{x+y+t}< \frac{y+z}{x+y+z+t}\)
\(\frac{z}{y+z+t}< \frac{z+x}{x+y+z+t}\)
\(\frac{t}{x+t+z}< \frac{t+y}{x+y+z+t}\)
=> \(\frac{x}{x+y+z}+\frac{y}{x+y+t}+\frac{z}{y+z+t}+\frac{t}{x+t+z}>\frac{x+t}{x+y+z+t}+\frac{y+z}{x+y+z+t}+\frac{z+x}{x+y+z+t}+\frac{t+y}{x+y+z+t}\)
=> \(M< \frac{2\left(x+y+z+t\right)}{x+y+z+t}=2\)
=> \(M< 2\)(2)
Từ (1) và (2) => \(1< M< 2\)
=> \(M\notin N\)
=> M không có giá trị là số tự nhiên
Ta có
\(\frac{x}{x+y+z+t}< \frac{x}{x+y+z}< \frac{x}{x+y}\)
\(\frac{y}{x+y+t+z}< \frac{y}{x+y+t}< \frac{y}{x+y}\)
\(\frac{z}{y+z+t+x}< \frac{z}{y+z+t}< \frac{z}{z+t}\)
\(\frac{t}{z+t+x+y}< \frac{t}{z+t+x}< \frac{t}{z+x}\)
công lại ta dc
1<M<2
vậy M k \(\in\)N
Vô đây: http://olm.vn/hoi-dap/question/300416.html
Bài đung 100%