K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 8 2016

Ta có\(x\sqrt{\frac{\left(2015+y^2\right)\left(2015+z^2\right)}{2015+x^2}}=x\sqrt{\frac{\left(xy+yz+zx+y^2\right)\left(xy+yz+zx+z^2\right)}{xy+yz+zx+x^2}}\)

\(=x\sqrt{\frac{\left(y+z\right)\left(x+y\right)\left(x+z\right)\left(y+z\right)}{\left(x+y\right)\left(x+z\right)}}=x\sqrt{\left(y+z\right)^2}=xy+xz\)

Tương tự:\(y\sqrt{\frac{\left(2015+x^2\right)\left(2015+z^2\right)}{2015+y^2}}=yx+yz\)

               \(z\sqrt{\frac{\left(2015+x^2\right)\left(2015+y^2\right)}{2015+z^2}}=zx+zy\)

Ta có :\(P=xy+xz+yx+yz+zx+zy=2\left(xy+yz+zx\right)=4030\)

=>P không phải là số chính phương

30 tháng 8 2015

câu 2  :

ab+  bc + ca = 2015 

=> 2015 +a^2 = a^2 + ab + bc + ca 

=> 2015 + a^2 = a(a+b ) + c( a + b ) = ( a + c )( a + b)

Tương tự : 2015+b^2 = ( b + c )(b +a )

 2015 + c^2 = ( c + a )(c + b ) thay vào ta có :

( 2015 + a^2)(2015 + b^2 ) (2015 +c^2) = (a + c )(a+b)(b+c)(b+a)(c+a)(c+b) = [(a+c)(a+b)(b+c) ]^2 là số chính phương 

30 tháng 8 2015

Câu 1 ) :

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{2015}\Rightarrow\frac{1}{x}+\frac{1}{y}=\frac{1}{2015}-\frac{1}{z}=\frac{z-2015}{2015z}\)

=> \(\frac{x+y}{xy}=\frac{z-2015}{2015z}\)

=> \(2015z\left(x+y\right)=\left(z-2015\right)xy\)

=> \(2015z\left(2015-z\right)-\left(z-2015\right)xy\) = 0 

=> \(\left(2015-z\right)\left(2015z-xy\right)\)= 0

=> \(\left(2015-z\right)\left(2015\left(2015-x-y\right)-xy\right)=0\)

=> \(\left(2015-z\right)\left(2015^2-2015x-2015y-xy\right)=0\)

=> \(\left(2015-z\right)\left(2015-x\right)\left(2015-y\right)=0\)

=> 2015 - z =  0 hoặc 2015 -x = 0 hoặc 2015 - y = 0 

=> z = 2015 hoặc x= 2015 hoặc y = 2015 

Vậy trong ba số có ít nhất 1 số bằng 2015 

28 tháng 10 2016

Từ giả thiết ta có ngay \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)

\(\Leftrightarrow\left(\frac{1}{x}+\frac{1}{y}\right)+\left(\frac{1}{z}-\frac{1}{x+y+z}\right)=0\)

\(\Leftrightarrow\frac{x+y}{xy}+\frac{x+y}{z\left(x+y+z\right)}=0\)

\(\Leftrightarrow\left(x+y\right)\left[\frac{1}{xy}+\frac{1}{z\left(x+y+z\right)}\right]=0\)

\(\Leftrightarrow\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz\left(x+y+z\right)}=0\)

\(\Rightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)

Suy ra x + y = 0 hoặc y + z = 0 hoặc z + x = 0

Tới đây bạn tự làm nhé :)

9 tháng 11 2019

Áp dụng BĐT Cô-si cho 2015 số dương : x2015,x2015 và 2013 số 1. Ta có :

\(x^{2015}+x^{2015}+1+1+...+1\ge2015\sqrt[2015]{\left(x^2\right)^{2015}}=2015x^2\)

TT : \(y^{2015}+y^{2015}+1+1+...+1\ge2015y^2\)

\(z^{2015}+z^{2015}+1+1+...+1\ge2015z^2\)

Cộng 3 vế BĐT , ta được :

\(2\left(x^{2015}+y^{2015}+z^{2015}\right)+2013.3\ge2015\left(x^2+y^2+z^2\right)\)

\(\Rightarrow x^2+y^2+z^2\le3\)

Dấu ' = " xảy ra khi x = y = z = 1

3 tháng 8 2017

mình ko bít

3 tháng 8 2017

mà mình mới lớp 6 thui ahihi

13 tháng 8 2019

Ta có: \(x^2-2y=-1\) \(\Leftrightarrow\) \(x^2-2y+1=0\) (1)

\(y^2+1=2z\) \(\Leftrightarrow y^2-2z+1=0\) (2)

\(2z^2=4x-2\) \(\Leftrightarrow2z^2-4x+2=0\)(3)

Cộng (1)(2)(3) theo vế:

\(\left(x-1\right)^2+\left(y-1\right)^2+\left(z-1\right)^2=0\)

=> x-1=0; y-1=0; z-1=0

=>x=y=z

=>\(x^{2015}+y^{2015}+z^{2015}=1+1+1=3\)(đpcm)

13 tháng 8 2019

x^2-2y=-1=>x^2-2y+1=0

y^2+1=2z=>y^2-2z+1=0

2z^2=4x-2=>z^2-2x+1=0

cộng vế với vế của 3 pt

ta có x^2-2y+1+y^2-2z+1+z^2-2x+1=0

=>(x-1)^2+(y-1)^2+(z-1)^2=0

=>x-1=0; y-1=0; z-1=0;

=>x=y=z=1

=>x^2015+y^2015+z^2015=3

13 tháng 10 2018

     

     \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\left(x;y;z,x+y+z\ne0\right)\)

\(\Rightarrow\frac{xy+yz+xz}{xyz}=\frac{1}{x+y+z}\)

\(\Rightarrow\left(xy+yz+xz\right)\left(x+y+z\right)=xyz\)

\(\Leftrightarrow\left(xy+yz+xz\right)\left(x+y+z\right)-xyz=0\)

\(\Leftrightarrow\left(xy+yz\right)\left(x+y+z\right)+xz\left(x+z\right)=0\)

\(\Leftrightarrow y\left(x+z\right)\left(x+y+z\right)+xz\left(x+z\right)=0\)

\(\Leftrightarrow\left(x+z\right)\left(xy+y^2+yz\right)+xz\left(x+z\right)=0\)

\(\Leftrightarrow\left(x+z\right)\left(xy+y^2+yz+xz\right)=0\)

\(\Leftrightarrow\left(x+z\right)\left[y\left(x+y\right)+z\left(x+y\right)\right]=0\)

\(\Leftrightarrow\left(x+z\right)\left(x+y\right)\left(y+z\right)=0\)

Từ đó \(x=-z\)hoặc \(x=-y\)hoặc \(y=-z\)

-Nếu \(x=-z\Rightarrow z^{2017}+x^{2017}=0\Rightarrow M=\frac{19}{4}+0=\frac{19}{4}\)

Tương tự với các trường hợp còn lại, ta cũng tính được \(M=\frac{19}{4}\)

14 tháng 10 2018

tự túc

15 tháng 2 2016

đề yêu cầu gì vậy bạn