K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2016

ta có x/3=y/4=z/5

2x2/18=2y2/32=3z2/75

áp dụng tính chất = nhau ta có

2x2+2y2-3z2/18+32-75=-100/-25=4

chỗ này mik làm sau

1 tháng 3 2016

ta có x/3=y/4=y/5

=>=4 mik đã làm

=>2x2=72 =>x2=36 => x=6

2y2=128=>y2=64=>y=8

3z2=300=>z2=100=>z=10

=>(x+y+z)2=(6+8+10)2=576

đúng 100% bạn hãy thử

27 tháng 2 2016

x:y:z=3:4:5

=>x/3=y/4=z/5

=>x2/9=y2/16=z2/25

=>2x2/18=2y2/32=3z2/75

Áp dụng t/c dãy tỉ số=nhau:

2x2/18=2y2/32=3z2/75=(2x2+2y2-3z2)/(18+32-75)=-100/-25=4

=>2x2=72=>x2=36=>x E {-6;6}

2y2=128=>y2=64=>y E {-8;8}

3z2=300=>z2=100=>z E {-10;10}

Vậy (x+y+z)2=576

15 tháng 10 2016

đừng nên dựa vào trang này quá 

bài trên thuộc dạng SGK , SBT mà không làm được à

1 tháng 8 2018

a, Theo đề bài ta có :

21 tháng 2 2016

x:y:z=3:4:5

=>x/3=y/4=z/5

=>x2/9=y2/16=z2/25

=>2x2/18=2y2/32=3z2/75

Theo t/c dãy tỉ số=nahu:

\(\frac{2x^2}{18}=\frac{2y^2}{32}=\frac{3z^2}{75}=\frac{2x^2+2y^2-3z^2}{18+32-75}=-\frac{100}{-25}=\frac{100}{25}=4\)

=>2x2=4.18=72=>x2=36=>x E {-6;6}

2y2=4.32=128=>y2=64=>y E {-8;8}

3z2=4.75=300=>z2=100=>z E {-10;10}

+)(x+y+z)2=(6+8+10)2=576

+)(x+y+z)2=[(-6)+(-8)+(-10)]2=(-24)2=576

Vậy (x+y+z)2=576

20 tháng 7 2015

dể nhưng dài quá ,ko ai làm nỗi đâu bn ơi 

16 tháng 7 2021

mình làm câu b nhé

2x-2/4=3y-6/9=z-3/4

Áp dụng tính chất dãy tỉ số bằng nhau ,ta có:

=2x-2+3y-6-z-3/4+9-5

=(2x+3y-z)-(2+6-3)/9

=50-5/9=45/9=5

mình gợi ý tới đây thui , còn lại bạn làm tiếp nhé

 

10 tháng 9 2019

Ta có:x:y:z=3:4:5

=>\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)

Mà 2x2+2y2-3z2=-100

=>\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{2x^2+2y^2-3z^2}{18+32-75}=\frac{-100}{-25}=4\)

=>x2=4x3=12=>x=\(\sqrt{12}\)

y2=4x4=16=>x=4

z2=4x5=20=>x=\(\sqrt{20}\)

Vậy,ta có x=\(\sqrt{12}\) y=4                 z=\(\sqrt{20}\)

11 tháng 9 2019

Xin lỗi bạn mình làm sai mình sẽ làm lại

7 tháng 12 2018

\(x:y:z=3:4:5\Leftrightarrow x=3k;y=4k;z=5k\)

\(2x^2+2y^2-3z^2=2.\left(3k\right)^2+2.\left(4k\right)^2-3.\left(5k\right)^2=18k^2+32k^2-75k^2=100\)

\(\Leftrightarrow-25k^2=-100\Leftrightarrow k^2=4\Leftrightarrow k=2\Rightarrow x=6;y=8;z=10\)

7 tháng 12 2018

\(\frac{x+1}{3}=\frac{y+2}{4}=\frac{z-1}{5}=\frac{x+1+y+2-z+1}{3+4-5}=\frac{54}{2}=27\Rightarrow laanfluot:\)

21 tháng 8 2015

Bài 1 : x/3 = y/4 = z/5 => x²/9 = y²/16 = z²/25 
=> 2x²/18 = 2y²/32 = 3z²/75 
=> x²/9 = (2x² + 2y² - 3z²)/(18 + 32 - 75) = - 100/(-25) = 1/4 
=> x²/9 = 1/4 => x² = 9/4 => x = ±3/2 
y²/16 = 1/4 => y² = 4 => y = ± 2 
z²/25 = 1/4 => z² = 25/4 => z = ±5/2 
Mà x, y, z cùng dấu. 
Vậy (x ; y ; z) = (3/2 ; 2 ; 5/2) , (-3/2 ; -2 ; -5/2)

11 tháng 7 2017

B3 ko tìm được x,y,z thỏa mãn do kết quả là 1 số không dương

12 tháng 12 2020

Bài làm

Nếu mà là -100 thì sẽ tròn là số 2 thay vì là 2√10

Ta có: \(x:y:z=3:4:5=\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)

Đặt \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=k\)

=> x = 3k

     y = 4k

     z = 5k

Lại có: 2x2 + 2y2 - 3z2 = -1000

=> 2(3k)2 + 2(4k)2 - 3(5k)2 = -1000

=> 2 . 9k2 + 2 . 16k2 - 3 . 25k2 = -1000

=> 18k2 + 32k2 - 75k2 = -1000

=> -25k2 = -1000

=> k2 = 40

=> k = \(\pm\sqrt{40}=\pm2\sqrt{10}\)

Thay \(k=2\sqrt{10}\) vào x = 3k, y = 4k và z = 5k 

Ta được: x = 3 . \(2\sqrt{10}\)\(6\sqrt{10}\)

               y = 4 . \(2\sqrt{10}\) = \(8\sqrt{10}\)

               z = 5 . \(2\sqrt{10}\) = \(10\sqrt{10}\)

Vậy x = \(6\sqrt{10}\)

y = \(8\sqrt{10}\)

z = \(10\sqrt{10}\)

4 tháng 7 2017

2.

a) \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{2x+3y+5z}{6+12+25}=\frac{86}{43}=2\)

\(\Rightarrow x=6;y=8;z=10\)

b) \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{18}=\frac{y}{24}\)( 1 )

\(\frac{y}{6}=\frac{z}{8}\Rightarrow\frac{y}{24}=\frac{z}{32}\)( 2 )

Từ ( 1 ) và ( 2 ) \(\Rightarrow\frac{x}{18}=\frac{y}{24}=\frac{z}{32}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(\frac{x}{18}=\frac{y}{24}=\frac{z}{32}=\frac{3x-2y-z}{54-48-32}=\frac{13}{-26}=\frac{-1}{2}\)

\(\Rightarrow x=-9;y=-12;z=-16\)

3.

a) \(\frac{x}{3}=\frac{y}{7}=\frac{z}{2}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(\frac{x}{3}=\frac{y}{7}=\frac{z}{2}=\frac{2x^2+y^2+3z^2}{18+49+12}=\frac{316}{79}=4\)

\(\Rightarrow x=12;y=28;z=8\)

b) x : y : z = 2 : 5 : 7

\(\Rightarrow\frac{x}{2}=\frac{y}{5}=\frac{z}{7}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(\frac{x}{2}=\frac{y}{5}=\frac{z}{7}=\frac{3x+2y-z}{6+10-7}=\frac{27}{9}=3\)'

\(\Rightarrow x=6;y=15;z=21\)

4 tháng 7 2017

2) a, \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{2x}{6}=\frac{3y}{12}=\frac{5z}{25}=\frac{2x+3y+5z}{6+12+25}=\frac{86}{43}=2\) (theo t/c dãy tỉ số bằng nhau)

=> x = 2.3 = 6 ; y = 2.4 = 8; z = 2.5 = 10

b, \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12}\)

\(\frac{y}{6}=\frac{z}{8}\Rightarrow\frac{y}{12}=\frac{z}{16}\)

\(\Rightarrow\frac{x}{9}=\frac{y}{12}=\frac{z}{16}\Rightarrow\frac{3x}{27}=\frac{2y}{24}=\frac{z}{16}=\frac{3x-2y-z}{27-24-16}=\frac{13}{-13}=-1\) (theo t/c của dãy tỉ số bằng nhau)

=> x=(-1).9=-9 ; y=(-1).12=-12 ; z=(-1).16=-16

c, Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\Rightarrow x=2k;y=3k;z=4k\)

Ta có: xy+yz+zx=104

=> (2k)(3k) + (3k)(4k) + (4k)(2k) = 104

=> 6k2 + 12k2 + 8k2 = 104

=> k2(6+12+8) = 104

=> 26k2  = 104

=> k2 = 4

=> k = ±2

Với k = 2 thì \(\hept{\begin{cases}x=2.2=4\\y=2.3=6\\z=2.4=8\end{cases}}\)

Với k = -2 thì \(\hept{\begin{cases}x=2.\left(-2\right)=-4\\y=\left(-2\right).3=-6\\z=\left(-2\right).4=-8\end{cases}}\)

3) a, Đặt k=x/3=y/7=z/2

\(k=\frac{x}{3}=\frac{y}{7}=\frac{z}{2}\Rightarrow k^2=\frac{x^2}{9}=\frac{y^2}{49}=\frac{z^2}{4}=\frac{2x^2}{18}=\frac{y^2}{49}=\frac{3z^2}{12}=\frac{2x^2+y^2+3z^2}{18+49+12}=\frac{316}{79}=4\)

=> k2 = 4 => k = ±2

Với k = 2 thì \(\hept{\begin{cases}\frac{x}{2}=2\Rightarrow x=4\\\frac{y}{3}=2\Rightarrow y=6\\\frac{z}{4}=2\Rightarrow z=8\end{cases}}\)

Với k = -2 thì \(\hept{\begin{cases}\frac{x}{2}=-2\Rightarrow x=-4\\\frac{y}{3}=-2\Rightarrow y=-6\\\frac{z}{4}=-2\Rightarrow z=-8\end{cases}}\)

b, \(x:y:z=2:5:7\Rightarrow\frac{x}{2}=\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{3x}{6}=\frac{2y}{10}=\frac{z}{7}\)

Theo tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{3x}{6}=\frac{2y}{10}=\frac{z}{7}=\frac{3x+2y-z}{6+10-7}=\frac{27}{9}=3\)

=> x = 2.3 = 6 ; y = 5.3 = 15 ; z = 7.3 = 21