Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các thánh giúp e nha Ace Legona Nguyễn Huy Tú Toshiro Kiyoshi Phương An Akai Haruma @Nguyễn Vũ Phượng Thảo
Do \(xyz\ne0\) ta có:
\(\dfrac{1}{xy}+\dfrac{1}{xz}+\dfrac{1}{yz}=0\Leftrightarrow xyz\left(\dfrac{1}{xy}+\dfrac{1}{xz}+\dfrac{1}{yz}\right)=0\Leftrightarrow x+y+z=0\)
Lại có: \(x^3+y^3+z^3=x^3+y^3+3x^2y+3y^2x-3xy\left(x+y\right)+z^3\)
\(=\left(x+y\right)^3+z^3-3xy\left(-z\right)=\left(x+y+z\right)\left(\left(x+y\right)^2-\left(x+y\right)z+z^2\right)+3xyz=3xyz\)
Vậy nếu \(x+y+z=0\) thì \(x^3+y^3+z^3=3xyz\)
\(P=\dfrac{x^2}{yz}+\dfrac{y^2}{xz}+\dfrac{z^2}{xy}=\dfrac{x^3}{xyz}+\dfrac{y^3}{xyz}+\dfrac{z^3}{xyz}=\dfrac{x^3+y^3+z^3}{xyz}=\dfrac{3xyz}{xyz}=3\)
ta có : \(T=\dfrac{x}{xy+x+1}+\dfrac{y}{yz+y+1}+\dfrac{z}{xz+z+1}\)
\(=\dfrac{x}{xyz+xy+x}+\dfrac{y}{yz+y+1}+\dfrac{z}{xz+z+1}\)
\(=\dfrac{1}{yz+y+1}+\dfrac{y}{yz+y+1}+\dfrac{z}{xz+z+1}\)
\(=\dfrac{y+1}{yz+y+1}+\dfrac{z}{xz+z+1}=\dfrac{xyz+y}{xyz+yz+y}+\dfrac{z}{xz+z+1}\)
\(=\dfrac{xz+1}{xz+z+1}+\dfrac{z}{xz+z+1}=\dfrac{xz+z+1}{xz+z+1}=1\)
\(\dfrac{1}{1+x+xy}+\dfrac{1}{1+y+yz}+\dfrac{1}{1+z+zx}\)
\(=\dfrac{1}{1+x+xy}+\dfrac{1}{1+y+\dfrac{1}{x}}+\dfrac{1}{1+\dfrac{1}{xy}+\dfrac{1}{y}}\)
\(=\dfrac{1}{1+x+xy}+\dfrac{x}{x+xy+1}+\dfrac{xy}{xy+1+x}=\dfrac{1+x+xy}{1+x+xy}=1\)
Áp dụng công thức a3+b3+c3=3abc
Bài làm
Đặt \(\dfrac{1}{x}\)= a, \(\dfrac{1}{y}\)= b, \(\dfrac{1}{z}\)= c
vì a+b+c = 0 nên a3+b3+c3=3abc
S= \(\dfrac{yz}{x^2}\)+ \(\dfrac{xz}{y^2}\)+ \(\dfrac{xy}{z^{ }2}\)
=\(\dfrac{xyz}{x^{ }3}\)+\(\dfrac{xyz}{y^{ }3}\)+\(\dfrac{xyz}{z^{ }3}\) = xyz(\(\dfrac{1}{x^3}\)+\(\dfrac{1}{y^{ }3}\)+\(\dfrac{1}{z^{ }3}\))
= xyz ( a3+b3+c3 )
= xyz \(\times\)3abc = xyz \(\times\) \(\dfrac{3}{xyz}\) = 3
\(M=\dfrac{yz\sqrt{x-1}+xz\sqrt{y-2}+xy\sqrt{z-3}}{xyz}\)
\(=\dfrac{yz\sqrt{x-1}}{xyz}+\dfrac{xz\sqrt{y-2}}{xyz}+\dfrac{xy\sqrt{z-3}}{xyz}\)
\(=\dfrac{\sqrt{x-1}}{x}+\dfrac{\sqrt{y-2}}{y}+\dfrac{\sqrt{z-3}}{z}\)
Áp dụng BĐT AM-GM ta có:
\(\sqrt{x-1}\le\dfrac{1+x-1}{2}=\dfrac{x}{2}\)\(\Rightarrow\dfrac{\sqrt{x-1}}{x}\le\dfrac{x}{2}\cdot\dfrac{1}{x}=\dfrac{1}{2}\)
\(\sqrt{y-2}=\dfrac{\sqrt{2\left(y-2\right)}}{\sqrt{2}}\le\dfrac{y}{2\sqrt{2}}\)\(\Rightarrow\dfrac{\sqrt{y-2}}{y}\le\dfrac{y}{2\sqrt{2}}\cdot\dfrac{1}{y}=\dfrac{1}{2\sqrt{2}}\)
\(\sqrt{z-3}=\dfrac{\sqrt{3\left(z-3\right)}}{\sqrt{3}}\le\dfrac{z}{2\sqrt{3}}\)\(\Rightarrow\dfrac{\sqrt{z-3}}{z}\le\dfrac{z}{2\sqrt{3}}\cdot\dfrac{1}{z}=\dfrac{1}{2\sqrt{3}}\)
Cộng theo vế 3 BĐT trên ta có:
\(M\le\dfrac{1}{2}\left(1+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}\right)\) (ĐPCM)
Ta có:
\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\)
\(\Leftrightarrow\dfrac{1}{x}+\dfrac{1}{y}=-\dfrac{1}{z}\)
\(\Leftrightarrow\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^3=\left(-\dfrac{1}{z}\right)^3\)
\(\Leftrightarrow\dfrac{1}{x^3}+3\dfrac{1}{x^2}\dfrac{1}{y}+3\dfrac{1}{x}\dfrac{1}{y^2}+\dfrac{1}{y^3}=-\dfrac{1}{z^3}\)
\(\Leftrightarrow\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}+3\dfrac{1}{x}\dfrac{1}{y}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)=0\)
\(\Leftrightarrow\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}+3\dfrac{1}{x}\dfrac{1}{y}.\left(-\dfrac{1}{z}\right)=0\)
\(\Leftrightarrow\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}=\dfrac{3}{xyz}\)
\(\Leftrightarrow xyz\left(\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}\right)=\dfrac{3}{xyz}.xyz\)
\(\Leftrightarrow\dfrac{yz}{x^2}+\dfrac{xz}{y^2}+\dfrac{xy}{z^2}=3\)
Vậy...
\(M=\dfrac{x}{x+xy+1}+\dfrac{xy}{xyz+xy+x}+\dfrac{z}{xz+z+xyz}\)
\(=\dfrac{x}{xy+x+1}+\dfrac{xy}{xy+x+1}+\dfrac{z}{\left(xy+x+1\right)z}\)
\(=\dfrac{x}{xy+x+1}+\dfrac{xy}{xy+x+1}+\dfrac{1}{xy+x+1}=1\)