K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2019

Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\frac{a-b}{x}=\frac{b-c}{y}=\frac{a-c}{z}=\frac{a-b+b-c-a+c}{x+y-z}=\frac{0}{x+y-z}=0\)

\(\Rightarrow\frac{a-b}{x}=0\Leftrightarrow a-b=0\Leftrightarrow a=b\)

\(\frac{b-c}{y}=0\Leftrightarrow b-c=0\Leftrightarrow b=c\)

\(\frac{a-c}{z}=0\Leftrightarrow a-c=0\Leftrightarrow a=c\)

\(\Rightarrow a=b=c\left(đpcm\right)\)

22 tháng 2 2017

Áp dụng TCDTSBN ta có :

\(\frac{a-b}{x}=\frac{b-c}{y}=\frac{a-c}{z}=\frac{\left(a-b\right)+\left(b-c\right)-\left(a-c\right)}{x+y-z}=\frac{0}{x+y-z}=0\)

\(\Rightarrow\frac{a-b}{x}=0\Rightarrow a-b=0\Rightarrow a=b\) (1)

\(\Rightarrow\frac{b-c}{y}=0\Rightarrow b-c=0\Rightarrow b=c\) (2)

\(\Rightarrow\frac{a-c}{z}=0\Rightarrow a-c=0\Rightarrow a=c\) (3)

Từ (1);(2) và (3) \(\Rightarrow a=b=c\) (đpcm)

17 tháng 2 2018

tra mạng đi hỏi nhiều haha!!!

:V chưởng nhờ anh HUY chỉ cho hihi

nó học giỏi toán lắm đó hehe!!!!

nvcl

17 tháng 2 2018

Theo tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a-b}{x}=\frac{b-c}{y}=\frac{a-c}{z}=\frac{\left(a-b\right)+\left(b-c\right)+\left(a-c\right)}{x+y+z}=\frac{2\left(a-c\right)}{x+y+z}\)
\(\Leftrightarrow\frac{a-c}{z}=\frac{2\left(a-c\right)}{x+y+z}\)
\(\Leftrightarrow x+y+z=2z\)
Do x+y+z lẻ và 2z là số chẵn nên không tồn tại x,y,z=> Đề sai :))
 

10 tháng 4 2017

\(\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\)

\(=\left(\frac{x^2}{a^2}-\frac{x^2}{a^2+b^2+c^2}\right)+\left(\frac{y^2}{b^2}-\frac{y^2}{a^2+b^2+c^2}\right)+\left(\frac{z^2}{c^2}-\frac{z^2}{a^2+b^2+c^2}\right)=0\)

\(=x^2.\frac{b^2+c^2}{a^2+b^2+c^2}+y^2.\frac{a^2+c^2}{a^2+b^2+c^2}+z^2.\frac{a^2+b^2}{a^2+b^2+c^2}=0\)

Vì \(a,b,c\ne0\) nên dấu =  xảy ra khi \(x=y=z=0\)

\(\Rightarrow A=x^{2003}+y^{2003}+z^{2003}=0+0+0=0\)

10 tháng 4 2017

\(A=x^{2003}+y^{2003}+z^{2003}=0+0+0=0\)

( Thì đằng nào 0 + 0 thì chẳng bằng 0 ) -_-"

~~~ Chúc bạn học giỏi ~~~

30 tháng 1 2018

Áp dụng tính chất dãy tỉ số bằng nhau ta có : a-b/x = b-c/y = a-c/z = a-b+b-c+c-a/x+y+z = 0

=> a-b=0 ; b-c=0 ; c-a=0

=> a=b=c

Tk mk nha

30 tháng 1 2018

hình như bn áp dụng sai r

10 tháng 12 2015

Bài 20: 

a) Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1\)

=> x = y; y = x

=> x = y = z

mà \(M=\frac{x^{670}.y^{670}.z^{670}}{y^{2012}}\)

\(\Rightarrow M=\frac{y^{670}.y^{670}.y^{670}}{y^{2012}}=\frac{y^{2010}}{y^{2012}}=\frac{1}{y^2}\)

b) a + c = 2b

=> d(a + c) = 2bd

=> ad + cd = 2bd  (1)

Có: c(b + d) = 2bd

=> cb + cd = 2bd  (2)

(1);(2) => ad + cd = cb + cd

=> ad = cb

=> a/b = c/d

=> đpcm

đợi nghĩ nốt c đã

10 tháng 12 2015

ừ, thay chỗ M đi, thế x=y=z vào, rõ là giang biết mà ko làm, làm đi chứ, tui đầu óc ngu si làm sai ko à

24 tháng 12 2018

\(\Rightarrow3+\frac{y+z-2x}{x}=3+\frac{x+z-2y}{y}=3+\frac{x+y-2z}{z}\)

\(\Rightarrow\frac{x+y+z}{x}=\frac{x+y+z}{y}=\frac{x+y+z}{z}\)

\(TH1:x+y+z=0\)

\(\Rightarrow x=-\left(y+z\right),y=-\left(x+z\right),z=-\left(x+y\right)\)

\(A=\left(1+\frac{-y-z}{y}\right).\left(1+\frac{-x-z}{z}\right).\left(1+\frac{-x-y}{x}\right)\)

\(A=-\left(\frac{z}{y}\cdot\frac{x}{z}\cdot\frac{y}{x}\right)=-1\)

\(TH2:x+y+z\ne0\)

\(\Rightarrow x=y=z\Rightarrow A=2^3=8\)

sai đề ròi: tớ làm 2 trường hợp luôn vì trường hợp x+y+z khác 0 thì A mới t/m thuộc N 

mà đề là x+y+z khác 0 -.-

24 tháng 12 2018

cảm ơn nhiều

10 tháng 12 2015

\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1\Leftrightarrow x=y=z\)

M =\(\frac{y^{670.3}}{y^{2012}}=\frac{y^{2010}}{y^{2012}}=\frac{1}{y^2}\)

Đề sai nhé  mẫu mũ 2010  => M =1  mới đúng

28 tháng 10 2015

**** cho mình trước rồi mình sẽ giải đúng 100% mình học rồi!