K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2019

\(2.x^{2011}+2009=x^{2011}+x^{2011}+1+1+...+1\ge2011\sqrt[2011]{x^{4022}}=2011x^2\)

\(tt:2y^{2011}+2009\ge2011x^2;2z^{2011}+2009\ge2011z^2\)

\(\text{Cộng vế theo vế ta được:}6+6027\ge2011\left(x^2+y^2+z^2\right)\Rightarrow2011.3\ge2011M\Rightarrow M\le3\)

\(\Rightarrow M_{max}=3.\text{Dấu "=" xảy ra khi:}x=y=z=1\)

10 tháng 10 2019

bài này dùng cauchy(chắc phải c/m)

có: x+y-2 căn xy = (cănx - căny)^2 lớn hơn hoặc = 0 =>x+y > hoặc = 2cănxy

2x^2011+2009 lớn hơn hoặc =2011x^2(mình lười rút gọn vế phải sr b)

tg tự(. . .) ta có 2011(x^2+y^2+z^2) nhỏ hơn hoặc =2(x^2011+y^2011+z^2011)+3x2009=6+6027=6033

=>x^2+y^2+z^2 nhỏ hơn hoặc = 3

max m là 3 khi x=y=z=3/3=1

NV
22 tháng 10 2021

\(x^{2011}+x^{2011}+1+...+1\) (2009 số 1) \(\ge2011\sqrt[2011]{x^{4022}}=2011x^2\)

Tương tự:

\(2y^{2011}+2009\ge2011y^2\)\(2z^{2011}+2009\ge2011z^2\)

Cộng vế:

\(2\left(x^{2011}+y^{2011}+z^{2011}\right)+6027\ge2011\left(x^2+y^2+z^2\right)\)

\(\Rightarrow2011\left(x^2+y^2+z^2\right)\le6033\)

\(\Rightarrow x^2+y^2+z^2\le3\)

11 tháng 2 2016

vì x2011+y2011+z2011=3=>x=1;y=1;z=1

            Vạy M=12+12+12=3

6 tháng 11 2019
https://i.imgur.com/svBtznx.jpg
16 tháng 6 2019

gt\(\Leftrightarrow\frac{x^2}{a^2}-\frac{x^2}{a^2+b^2+c^2}+\frac{y^2}{b^2}-\frac{y^2}{a^2+b^2+c^2}+\frac{z^2}{c^2}-\frac{z^2}{a^2+b^2+c^2}=0\)

\(\Leftrightarrow x^2\left(\frac{1}{a^2}-\frac{1}{a^2+b^2+c^2}\right)+y^2\left(\frac{1}{b^2}-\frac{1}{a^2+b^2+c^2}\right)+z^2\left(\frac{1}{c^2}-\frac{1}{a^2+b^2+c^2}\right)=0\)

Vì \(x^2,y^2,z^2\ge0\) và các phép trừ trong ngoặc lớn hơn 0

nên x=y=z=0

=> M=0+0+0=0