Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Áp dụng BĐT AM-GM ta có:
\(6=\frac{1}{x}+\frac{2}{y}+\frac{3}{z}=\frac{1}{x}+\frac{1}{y}+\frac{1}{y}+\frac{1}{z}+\frac{1}{z}+\frac{1}{z}\)
\(\geq 6\sqrt[6]{\frac{1}{xy^2z^3}}\)
\(\Leftrightarrow \frac{1}{xy^2z^3}\leq 1\Leftrightarrow xy^2z^3\geq 1\)
Tiếp tục áp dụng BĐT AM-GM:
\(A=x+y^2+z^3\geq 3\sqrt[3]{xy^2z^3}\geq 3\sqrt[3]{1}=3\)
Vậy \(A_{\min}=3\)
Dấu bằng xảy ra khi \(\left\{\begin{matrix} \frac{1}{x}=\frac{1}{y}=\frac{1}{z}\\ x=y^2=z^3\end{matrix}\right.\Leftrightarrow x=y=z=1\)
\(P=\dfrac{1}{x^2+x}+\dfrac{1}{y^2+y}+\dfrac{1}{z^2+z}\)
\(=\dfrac{1}{x\left(x+1\right)}+\dfrac{1}{y\left(y+1\right)}+\dfrac{1}{z\left(z+1\right)}\)
\(=\dfrac{1}{x}-\dfrac{1}{x+1}+\dfrac{1}{y}-\dfrac{1}{y+1}+\dfrac{1}{z}-\dfrac{1}{z+1}\)
Áp dụng BĐT \(\dfrac{1}{x+y}\le\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\) và BĐT Cauchy Shwarz dạng Engel, ta có:
\(P\ge\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)-\dfrac{1}{4}\left(\dfrac{1}{x}+1+\dfrac{1}{y}+1+\dfrac{1}{z}+1\right)\)
\(=\dfrac{3}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)-\dfrac{3}{4}\)
\(\ge\dfrac{3}{4}\left[\dfrac{\left(1+1+1\right)^2}{x+y+z}\right]-\dfrac{3}{4}=\dfrac{3}{4}\left(\dfrac{9}{3}-1\right)=\dfrac{3}{2}\)
Dấu "=" xảy ra khi x = y = z = 1.
Min P = 1,5 <=> x = y = z = 1.
T xài phương pháp chuẩn hóa thử, lên C3 có gặp mấy bài này chém dễ dàng, có sai thì đừng ném đá nha :vv.
Ta chứng minh BĐT sau:
\(\dfrac{1}{x^2+x}\ge-0,75x+1,25\) \(\forall x\in\left(0;1\right)\) ( Để ra cái BĐT này t dùng casio, ra cái này là ra hết bài :D )
Thật vậy: \(\dfrac{1}{x^2+x}+0,75x-1,25\ge0\)
\(\Rightarrow\dfrac{1+0,75x\left(x^2+x\right)-1,25\left(x^2+x\right)}{x^2+x}\ge0\)
\(\Rightarrow1+0,75x^3+0,75x^2-1,25x^2+1,25x\ge0\)
\(\Rightarrow0,75\left(x-1\right)^2\left(x+\dfrac{4}{3}\right)\ge0\) \(\forall x\in\left(0;1\right)\) (BĐT này luôn đúng)
Tương tự: \(\dfrac{1}{y^2+y}\ge-0,75y+1,25\)
\(\dfrac{1}{z^2+z}\ge-0,75z+1,25\)
Cộng vế theo vế các BĐT vừa chứng minh, ta được: \(P\ge-0,75\left(x+y+z\right)+1,25.3\)
\(P\ge1\)
Vậy Min P =1 khi x=y=z =1
Bài 3:
a) Áp dụng BĐT Cauchy-Schwarz:
\(\frac{1}{xy}+\frac{2}{x^2+y^2}=2\left(\frac{1}{2xy}+\frac{1}{x^2+y^2}\right)\) \(\geq 2.\frac{(1+1)^2}{2xy+x^2+y^2}=\frac{8}{(x+y)^2}=8\)
Dấu bằng xảy ra khi \(x=y=\frac{1}{2}\)
b) Áp dụng BĐT Cauchy-Schwarz:
\(\frac{1}{xy}+\frac{1}{x^2+y^2}=\frac{1}{2xy}+\left (\frac{1}{2xy}+\frac{1}{x^2+y^2}\right)\geq \frac{1}{2xy}+\frac{(1+1)^2}{2xy+x^2+y^2}\)
\(=\frac{1}{2xy}+\frac{4}{(x+y)^2}\)
Theo BĐT AM-GM:
\(xy\leq \frac{(x+y)^2}{4}=\frac{1}{4}\Rightarrow \frac{1}{2xy}\geq 2\)
Do đó \(\frac{1}{xy}+\frac{1}{x^2+y^2}\geq 2+4=6\)
Dấu bằng xảy ra khi \(x=y=\frac{1}{2}\)
Bài 1: Thiếu đề.
Bài 2: Sai đề, thử với \(x=\frac{1}{6}\)
Bài 4 a) Sai đề với \(x<0\)
b) Áp dụng BĐT AM-GM:
\(x^4-x+\frac{1}{2}=\left (x^4+\frac{1}{4}\right)-x+\frac{1}{4}\geq x^2-x+\frac{1}{4}=(x-\frac{1}{2})^2\geq 0\)
Dấu bằng xảy ra khi \(\left\{\begin{matrix} x^4=\frac{1}{4}\\ x=\frac{1}{2}\end{matrix}\right.\) (vô lý)
Do đó dấu bằng không xảy ra , nên \(x^4-x+\frac{1}{2}>0\)
Bài 6: Áp dụng BĐT AM-GM cho $6$ số:
\(a^2+b^2+c^2+d^2+ab+cd\geq 6\sqrt[6]{a^3b^3c^3d^3}=6\)
Do đó ta có đpcm
Dấu bằng xảy ra khi \(a=b=c=d=1\)
5) a) Đặt b+c-a=x;a+c-b=y;a+b-c=z thì 2a=y+z;2b=x+z;2c=x+y
Ta có:
\(\dfrac{2a}{b+c-a}+\dfrac{2b}{a+c-b}+\dfrac{2c}{a+b-c}=\dfrac{y+z}{x}+\dfrac{x+z}{y}+\dfrac{x+y}{z}=\left(\dfrac{x}{y}+\dfrac{y}{x}\right)+\left(\dfrac{z}{x}+\dfrac{x}{z}\right)+\left(\dfrac{z}{y}+\dfrac{y}{z}\right)\ge6\)
Vậy ta suy ra đpcm
b) Ta có: a+b>c;b+c>a;a+c>b
Xét: \(\dfrac{1}{a+c}+\dfrac{1}{b+c}>\dfrac{1}{a+b+c}+\dfrac{1}{b+c+a}=\dfrac{2}{a+b+c}>\dfrac{2}{a+b+a+b}=\dfrac{1}{a+b}\)
.Tương tự:
\(\dfrac{1}{a+b}+\dfrac{1}{a+c}>\dfrac{1}{b+c};\dfrac{1}{a+b}+\dfrac{1}{b+c}>\dfrac{1}{a+c}\)
Vậy ta có đpcm
6) Ta có:
\(a^2+b^2+c^2+d^2+ab+cd\ge2ab+2cd+ab+cd=3\left(ab+cd\right)\)
\(ab+cd=ab+\dfrac{1}{ab}\ge2\)
Suy ra đpcm
Áp dụng BĐT Cauchy cho các số dương , ta có :
\(\dfrac{xy}{z}+\dfrac{yz}{x}\) ≥ \(2\sqrt{\dfrac{xy}{z}.\dfrac{yz}{x}}=2\sqrt{y^2}=2y\left(1\right)\)
\(\dfrac{yz}{x}+\dfrac{xz}{y}\) ≥ \(2\sqrt{\dfrac{yz}{x}.\dfrac{xz}{y}}=2\sqrt{z^2}=2z\left(2\right)\)
\(\dfrac{xy}{z}+\dfrac{xz}{y}\) ≥ \(2\sqrt{\dfrac{xy}{z}.\dfrac{xz}{y}}=2\sqrt{x^2}=2x\left(3\right)\)
Cộng từng vế của ( 1 ; 2 ; 3) , ta được :
\(2\left(\dfrac{xy}{z}+\dfrac{yz}{x}+\dfrac{xz}{y}\right)\) ≥ \(2\left(x+y+z\right)\)
⇔ \(\dfrac{xy}{z}+\dfrac{yz}{x}+\dfrac{xz}{y}\) ≥ \(x+y+z=2019\)
⇒ \(P_{Min}=2019\) ⇔ \(x=y=z=673\)
a, \(\dfrac{x}{2}=\dfrac{y}{4}=\dfrac{z}{5}\Rightarrow\dfrac{x^2}{4}=\dfrac{y^2}{16}=\dfrac{z^2}{25}\)
Theo t/c dãy tỉ số bằng nhau, ta có:
\(\dfrac{x^2}{4}=\dfrac{y^2}{16}=\dfrac{z^2}{25}=\dfrac{x^2+y^2}{4+16}=\dfrac{2000}{20}=100\)
\(\Rightarrow\left\{{}\begin{matrix}x^2=100.4=400\\y^2=100.16=1600\\z^2=100.25=2500\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\pm20\\y=\pm40\\z=\pm50\end{matrix}\right.\)
Do \(\dfrac{x}{2}=\dfrac{y}{4}=\dfrac{z}{5}\Rightarrow\left\{{}\begin{matrix}x=20\\y=40\\z=50\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x=-20\\y=-40\\z=-50\end{matrix}\right.\)
Vậy ...
b, \(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}=\dfrac{2y-4}{6}=\dfrac{3z-9}{12}\)
Theo t/c dãy tỉ số bằng nhau, ta có:
\(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}=\dfrac{2y-4}{6}=\dfrac{3z-9}{12}\)
\(=\dfrac{x-1-2y+4+3z-9}{2-6+12}=\dfrac{14-6}{8}=\dfrac{8}{8}=1\)
\(\Rightarrow\left\{{}\begin{matrix}x-1=1.2=2\\y-2=1.3=3\\z-3=1.4=4\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=3\\y=5\\z=7\end{matrix}\right.\)
Vậy ...
c, \(x-z=-2\Rightarrow x+2=z\)
Do đó \(y.z=12\Leftrightarrow y.\left(x+2\right)=12\Rightarrow xy+2y=12\Rightarrow6+2y=12\)
\(\Rightarrow y=3\Rightarrow x.3=6\Rightarrow x=2\Rightarrow2-z=-2\Rightarrow z=4\)
Vậy x=2; y=3; z=4
2)
Theo hệ quả của bất đẳng thức Cauchy ta có
\(\left(x+y+z\right)^2\ge3\left(xy+yz+xz\right)\)
Do \(x^2+y^2+z^2\le3\)
\(\Rightarrow3\ge3\left(xy+yz+xz\right)\)
\(\Rightarrow1\ge xy+yz+xz\)
\(\Rightarrow4\ge xy+yz+xz+3\)
\(\Rightarrow\dfrac{9}{4}\le\dfrac{9}{3+xy+xz+yz}\) ( 1 )
Ta có \(C=\dfrac{1}{1+xy}+\dfrac{1}{1+yz}+\dfrac{1}{1+xz}\)
Áp dụng bất đẳng thức cộng mẫu số
\(\Rightarrow C=\dfrac{1}{1+xy}+\dfrac{1}{1+yz}+\dfrac{1}{1+xz}\ge\dfrac{9}{3+xy+yz+xz}\) ( 2 )
Từ ( 1 ) và ( 2 )
\(\Rightarrow C=\dfrac{1}{1+xy}+\dfrac{1}{1+yz}+\dfrac{1}{1+xz}\ge\dfrac{9}{4}\)
Vậy \(C_{min}=\dfrac{9}{4}\)
Dấu " = " xảy ra khi \(x=y=z=\sqrt{\dfrac{1}{3}}\)
\(=>P=\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\sqrt{3}\)
CHÚC BẠN HỌC TỐT..........
\(P+3=x+\left(y^2+1\right)+\left(z^3+1+1\right)\ge x+2y+3z\)
\(\Rightarrow P\ge x+2y+3z-3\)
\(6=\dfrac{1}{x}+\dfrac{4}{2y}+\dfrac{9}{3z}\ge\dfrac{\left(1+2+3\right)^2}{x+2y+3z}\)
\(\Rightarrow x+2y+3z\ge6\Rightarrow P\ge3\)
Dấu "=" xảy ra khi \(x=y=z=1\)