Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M = x+y/z + x+z/y + y+z/x
M = x+y+z/z + x+y+z/y + x+y+z/x - z/z - y/y - x/x
M = (x+y+z).(1/z + 1/y + 1/x) - 1 - 1 - 1
M = 2020.1/202 - 3
M = 10 - 3 = 7
Ta có :
\(\frac{10}{7}< \frac{14}{7}=2\Rightarrow x< 2\)
Mà \(x\in N\)
TH1 : \(x=0;\)ta có :
\(\frac{1}{y+\frac{1}{z}}=\frac{10}{7}\)
\(\Rightarrow y+\frac{1}{z}=\frac{7}{10}\)
Mà \(\frac{7}{10}< 1\)
\(\Rightarrow y< 1\)
Mà \(y\in N\)
\(\Rightarrow y=0\)
\(\Rightarrow\frac{1}{z}=\frac{7}{10}\)
\(\Rightarrow z=\frac{10}{7}\)
Mà \(\frac{10}{7}\notin N\)
Do đó loại trường hợp này.
TH2 : \(x=1;\)ta có :
\(1+\frac{1}{y+\frac{1}{z}}=\frac{10}{7}\)
\(\Rightarrow\frac{1}{y+\frac{1}{z}}=\frac{10}{7}-1\)
\(\Rightarrow\frac{1}{y+\frac{1}{z}}=\frac{3}{7}\)
\(\Rightarrow y+\frac{1}{z}=\frac{3}{7}\)
Mà \(\frac{3}{7}< 1\)
\(\Rightarrow y< 1\)
Mà \(y\in N\)
\(\Rightarrow y=0\)
\(\Rightarrow\frac{1}{z}=\frac{3}{7}\)
\(\Rightarrow z=\frac{7}{3}\)
Mà \(\frac{7}{3}\notin N\)
Do đó không có x ;y ; z thỏa mãn đề bài .
\(\frac{y+z+1+x+z+2+x+y-3}{x+y+z}\)=\(\frac{1}{x+y+z}\)
\(\frac{\left(y+z+x+z+x+y\right)+\left(1+2-3\right)}{x+y+z}\)=\(\frac{1}{x+y+z}\)
\(\frac{2x+2y+2x}{x+y+z}\)=\(\frac{1}{x+y+z}\)
2=\(\frac{1}{x+y+z}\)(1)
Từ(1) => \(\frac{1}{x+y+z}\)=2 => x+y+z=0,5=>x+z=0,5-y(2)
Từ(1)=> x+y+1=2x(3)
x+z+2=2y(4)
z+y-3=2z(5)
Thay(2) vào (4) ta được: 0,5-y+2=2y
=> 2,5=3y
=> y=\(\frac{5}{6}\)
Thay y=\(\frac{5}{6}\)vào(3) ta được:x+\(\frac{5}{6}\)+1=2x
\(\frac{11}{6}\)=x
Thay x=\(\frac{11}{6}\); y=\(\frac{5}{6}\)vào x+y+z=0,5 ta đươc:
\(\frac{11}{6}\)+\(\frac{5}{6}\)+z=0,5
z=\(\frac{-13}{6}\)
Vậy ............
chúc bn học tốt.
k cho mik nha
\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{y+z+1+x+z+2+x+y-3}{x+y+z}=2\)
\(\frac{1}{x+y+z}=2\Rightarrow x+y+z=\frac{1}{2}\)
\(\Rightarrow y+z=\frac{1}{2}-x;x+z=\frac{1}{2}-y;z+y=\frac{1}{2}-x\)
THAY VÀO BIỂU THỨC TA CÓ:
\(\frac{\frac{1}{2}-x+1}{x}=2\Rightarrow\frac{3}{2}-x=2x\Rightarrow x=\frac{1}{2}\)
\(\frac{\frac{1}{2}-y+2}{y}=2\Rightarrow\frac{5}{2}-y=2y\Rightarrow y=\frac{5}{6}\)
\(\frac{\frac{1}{2}-z-3}{z}=2\Rightarrow\frac{-5}{2}-z=2z\Rightarrow z=-\frac{5}{6}\)
\(\frac{y+z+1}{x}+\frac{x+z+2}{y}+\frac{x+y-3}{z}=\frac{y+x+1+x+z+2+x+y-3}{x+y+x}=\frac{2x+2y+2z}{x+y+z}=2.\)
\(\frac{1}{x+y+z}=2\Rightarrow x+y+z=\frac{1}{2}=0,5\)
\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}\)\(\Rightarrow\frac{y+z+1}{x}+1=\frac{x+z+2}{y}+1=\frac{x+y-3}{z}+1=0,5+1\)
\(\Leftrightarrow\frac{x+y+z+1}{x}=\frac{x+y+z+2}{y}=\frac{x+y+z-3}{z}=1,5\)
\(\Leftrightarrow\frac{0,5+1}{x}=\frac{0,5+2}{y}=\frac{0,5-3}{z}=1,5\)
\(\Rightarrow\hept{\begin{cases}\frac{1,5}{x}=1,5\\\frac{2,5}{y}=1,5\\\frac{-2,5}{z}=1,5\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=1,6\\z=-1,6\end{cases}}}\)
x;y;z có vai trò tương đương nên giả sử: \(0< x\le y\le z\)
Khi đó ta có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\le\frac{3}{x}\Rightarrow\frac{3}{x}\ge1\Rightarrow x\le3\). Do x;y;z thuộc N* nên:
Vậy có 3 bộ số thỏa mã đề bài là (2; 3; 6); (2 ; 4 ; 4) ; (3 ; 3 ; 3)
Đảo các bộ số này với x ; y; z ta có 10 nghiệm của PT.