K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
25 tháng 10 2021

Lời giải:
Vì $x^2+y^2$ chẵn nên $x,y$ có cùng tính chất chẵn lẻ

Nếu $x,y$ cùng lẻ. Đặt $x=2k+1, y=2m+1$ với $k,m$ nguyên 

Khi đó:

$x^2+y^2=(2k+1)^2+(2m+1)^2=4(k^2+m^2+k+m)+2$ không chia hết cho $4$

$\Rightarrow x^2+y^2$ không chia hết cho $16$ (trái giả thiết)

Do đó $x,y$ cùng chẵn 

Đặt $x=2k, y=2m$ với $k,m$ nguyên 

a. 

$xy=2k.2m=4km\vdots 4$ (đpcm)

b.

$x^2+y^2=(2k)^2+(2m)^2=4(k^2+m^2)\vdots 16$

$\Rightarrow k^2+m^2\vdots 4$

Tương tự lập luận ở trên, $k,m$ cùng tính chẵn lẻ. Nếu $k,m$ cùng lẻ thì $k^2+m^2$ không chia hết cho $4$ (vô lý) nên $k,m$ cùng chẵn.

Đặt $k=2k_1, m=2m_1$ với $k_1, m_1$ nguyên 

Khi đó:

$xy=2k.2m=4km=4.2k_1.2m_1=16k_1m_1\vdots 16$ (đpcm)

13 tháng 2 2016

Vì x^2+1 chia hết xy+1 nên y^2(x^2+1) chia hết xy+1

hay x^2y^2 +y^2 chia hết xy+1.

Ta có x^2y^2+y^2=(x^2y^2 +2xy+1) +y^2 -2xy-1   Thêm và bớt 2xy+1

=(x^2y^2 +2xy+1) -2(xy+1) +y^2+1

=(xy+1)^2 -2(xy+1) +y^2+1 suy ra y^2+1  chia hết xy+1

13 tháng 2 2016

Vì x^2+1 chia hết xy+1 nên y^2(x^2+1) chia hết xy+1

Hay x^2y^2 +y^2 chia hết xy+1.

Ta có x^2y^2+y^2=(x^2y^2 +2xy+1) +y^2 -2xy-1   Thêm và bớt 2xy+1

=(x^2y^2 +2xy+1) -2(xy+1) +y^2+1

=(xy+1)^2 -2(xy+1) +y^2+1 suy ra y^2+1  Chia hết xy+1

21 tháng 5 2020

7r6jp

1 tháng 3 2018

BÀI 1:

\(A+B=x^2y+xy^2\)

\(\Leftrightarrow\)\(A+B=xy\left(x+y\right)\)

Vì    \(x+y\)\(⋮\)\(13\)

nên     \(xy\left(x+y\right)\)\(⋮\)\(13\)

Vậy    \(A+B\)\(⋮\)\(13\)  nếu      \(x+y\)\(⋮\)\(13\)

15 tháng 5 2020

44WRW

7 tháng 2 2016

Giải: Do (100x+10y+z)+5(x−2y+4z)=105x+21z=21(5x+z)⋮21(100x+10y+z)+5(x−2y+4z)=105x+21z=21(5x+z)⋮21
nên 100x+10y+z⋮21⇔5(x−2y+4z)⋮21⇔x−2y+4z⋮21100x+10y+z⋮21⇔5(x−2y+4z)⋮21⇔x−2y+4z⋮21
Do đó cả chiều thuận và đảo đều thoả mãn. 

 

16 tháng 6 2017

1) Đặt \(A=\left(a+b\right)\left(b+c\right)\left(c+a\right)-abc\)

\(\Rightarrow A=\left(a+b+c\right)\left(ab+bc+ca\right)-2abc\)

\(\Rightarrow A\)có dạng \(4k-2abc\left(k\in Z\right)\)

Giả sử trong 3 số \(a,b,c\)có 1 số lẻ \(\Rightarrow\)Trong \(a,b,c\)có một số chẵn \(\left(a+b+c=4\right)\)

\(\Rightarrow2abc⋮4\)

Giả sử trong \(a,b,c\)có 1 số chẵn \(\Rightarrow2abc⋮4\)

\(\Rightarrow2abc=4m\)\(\Rightarrow A=4k-4m\). Mà \(4k-4m=4\left(k-m\right)⋮4\Rightarrow A⋮4\)

Vậy \(\left(a+b\right)\left(b+c\right)\left(c+a\right)-abc⋮4\)(đpcm)