K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 12 2018

\(\dfrac{x^2}{y+z}+\dfrac{y^2}{x+z}+\dfrac{z^2}{x+y}\)

\(=x.\left(\dfrac{x}{y+z}+1-1\right)+y.\left(\dfrac{y}{x+z}+1-1\right)+z.\left(\dfrac{z}{x+y}+1-1\right)\)

\(=x.\left(\dfrac{x+y+z}{y+z}\right)+y.\left(\dfrac{x+y+z}{x+z}\right)+z.\left(\dfrac{x+y+z}{x+y}\right)-\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(\dfrac{x}{y+z}+\dfrac{y}{z+x}+\dfrac{z}{x+y}\right)-\left(x+y+z\right)=\left(x+y+z\right)-\left(x+y+z\right)=0\)

AH
Akai Haruma
Giáo viên
5 tháng 8 2017

Lời giải:

Đặt \(\left ( \frac{x}{y},\frac{y}{z},\frac{z}{x} \right )=(a,b,c)\Rightarrow abc=1\)

Bài toán tương đương với: Cho \(a,b,c>0\)\(abc=1\). CMR

\(a^2+b^2+c^2\geq a+b+c\)

Thật vậy.

Áp dụng BĐT AM-GM: \(a+b+c\geq 3\sqrt[3]{abc}=3\sqrt[3]{1}=3(1)\)

Theo hệ quả của BĐT Am-Gm:

\(a^2+b^2+c^2\geq ab+bc+ac\Rightarrow 3(a^2+b^2+c^2)\geq a^2+b^2+c^2+2(ab+bc+ac)\)

\(\Rightarrow a^2+b^2+c^2\geq \frac{(a+b+c)^2}{3}\)

Kết hợp với \((1)\Rightarrow a^2+b^2+c^2\geq a+b+c\)

Do đó ta có đpcm

Dấu bằng xảy ra khi \(a=b=c=1\Leftrightarrow x=y=z\)

30 tháng 11 2018

Câu hỏi của Hoàng Liên - Toán lớp 9 - Học toán với OnlineMath Em tham khảo tại link này nhé !

13 tháng 11 2017

1) \(\dfrac{3}{x-3}-\dfrac{6x}{9-x^2}+\dfrac{x}{x+3}=0\)

\(\Leftrightarrow\dfrac{3}{x-3}+\dfrac{6x}{x^2-9}+\dfrac{x}{x+3}=0\)

\(\Leftrightarrow\dfrac{3}{x-3}+\dfrac{6x}{\left(x-3\right)\left(x+3\right)}+\dfrac{x}{x+3}=0\)

\(\Leftrightarrow\dfrac{3\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}+\dfrac{6x}{\left(x-3\right)\left(x+3\right)}+\dfrac{x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\dfrac{3\left(x+3\right)+6x+x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\dfrac{3x+9+6x+x^2-3x}{\left(x-3\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\dfrac{x^2+6x+9}{\left(x-3\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\dfrac{x^2+2.x.3+3^2}{\left(x-3\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\dfrac{\left(x+3\right)^2}{\left(x-3\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\dfrac{x+3}{x-3}=0\)

\(\Leftrightarrow x+3=0\)

\(\Leftrightarrow x=-3\)

Vậy x=-3

13 tháng 11 2017

bạn ơi x ko thể bằng -3 đc vì

\(\dfrac{x}{x+3}=\dfrac{-3}{-3+3}=\dfrac{-3}{0}\) là sai

13 tháng 4 2017

Ta có:

\(\left(x+y+z\right)\left(\dfrac{x}{y+z}+\dfrac{y}{z+x}+\dfrac{z}{x+y}\right)=\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}+x+y+z\)

\(\Leftrightarrow x+y+z=\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}+x+y+z\)

\(\Leftrightarrow\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}=0\)