Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho x,y,z là các số dương thỏa mãn x+y+z=3
Cmr \(\frac{1}{x^2+y^2+z^2}+\frac{2009}{xy+yz+xz}\ge670\)
\(P=\frac{1}{x^2+y^2+z^2}+\frac{4}{2\left(xy+xz+yz\right)}+\frac{2007}{xy+xz+yz}\)
\(P\ge\frac{9}{x^2+y^2+z^2+2\left(xy+xz+yz\right)}+\frac{2007}{xy+xz+yz}\)
\(P\ge\frac{9}{\left(x+y+z\right)^2}+\frac{2007}{\frac{\left(x+y+z\right)^2}{3}}=670\)
Dấu "=" xảy ra khi \(x=y=z=1\)
Từ dữ kiện đề bài => x + y + z = xyz
Ta có :
\(\frac{x}{\sqrt{yz\left(1+x^2\right)}}=\frac{x}{\sqrt{yz+xyz.x}}=\frac{x}{\sqrt{yz+x\left(x+y+z\right)}}=\frac{x}{\sqrt{\left(x+z\right)\left(x+y\right)}}\)
\(=\frac{\sqrt{x}}{\sqrt{x+z}}.\frac{\sqrt{x}}{\sqrt{x+y}}\le\frac{1}{2}.\left(\frac{x}{x+z}+\frac{x}{x+y}\right)\)
Tương tự với hai hạng tử còn lại , suy ra
\(Q\le\frac{1}{2}\left(\frac{x}{x+z}+\frac{x}{x+y}\right)+\frac{1}{2}\left(\frac{y}{x+y}+\frac{y}{y+z}\right)+\frac{1}{2}\left(\frac{z}{z+x}+\frac{z}{z+y}\right)=\frac{3}{2}\)
Vậy Max = 3/2 <=> x = y = z
Nguồn : Đinh Đức Hùng
Ta có: \(x+y+z=0\)
\(\Rightarrow x+y=-z\)
\(\Leftrightarrow\left(x+y\right)^2=\left(-z\right)^2\)
\(\Leftrightarrow x^2+2xy+y^2=z^2\)
\(\Leftrightarrow x^2+y^2-z^2=-2xy\)
Chứng minh tương tự ta có:
\(x^2+z^2-y^2=-2xz\)
\(y^2+z^2-x^2=-2yz\)
\(\frac{xy}{x^2+y^2-z^2}+\frac{xz}{x^2+z^2-y^2}+\frac{yz}{y^2+z^2-x^2}\)
\(=\frac{xy}{-2xy}+\frac{xz}{-2xz}+\frac{yz}{-2yz}\)
\(=-\frac{1}{2}-\frac{1}{2}-\frac{1}{2}\)
\(=-\frac{3}{2}\)
Vậy giá trị biểu thức là \(-\frac{3}{2}\)
Từ \(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}=1\)
\(\Rightarrow\)\(x+y+z=xyz\)
Ta có : \(\sqrt{yz\left(1+x^2\right)}=\sqrt{yz+x^2yz}=\sqrt{yz+x\left(x+y+z\right)}=\sqrt{\left(x+y\right)\left(x+z\right)}\)
Tương tự : \(\sqrt{xy\left(1+z^2\right)}=\sqrt{\left(z+y\right)\left(z+x\right)}\); \(\sqrt{zx\left(1+y^2\right)}=\sqrt{\left(y+z\right)\left(y+x\right)}\)
Nên \(Q=\frac{x}{\sqrt{\left(x+y\right)\left(x+z\right)}}+\frac{y}{\sqrt{\left(y+z\right)\left(y+x\right)}}+\frac{z}{\sqrt{\left(z+x\right)\left(z+y\right)}}\)
\(Q=\sqrt{\frac{x}{x+y}.\frac{x}{x+z}}+\sqrt{\frac{y}{x+y}.\frac{y}{y+z}}+\sqrt{\frac{z}{x+z}.\frac{z}{y+z}}\)
Áp dụng BĐT \(\sqrt{A.B}\le\frac{A+B}{2}\left(A,B>0\right)\)
Dấu "=" xảy ra khi A = B :
Ta được :
\(Q\le\frac{1}{2}\left(\frac{x}{x+y}+\frac{x}{x+z}+\frac{y}{y+x}+\frac{y}{y+z}+\frac{z}{z+x}+\frac{z}{z+y}\right)=\frac{3}{2}\)
Vậy GTLN của \(Q=\frac{3}{2}\)khi \(x=y=z=\sqrt{3}\)
bài này esay thôi:
ta có \(x+y+z\le3\Leftrightarrow\left(x+y+z\right)^2\le9.\)
Ta lại có:\(\left(x+y+z\right)^2\ge3\left(xy+zx+zy\right)\)
\(\Leftrightarrow9\ge3\left(xy+yz+xz\right)\Leftrightarrow3\ge xy+xz+yz\)
Ta có:
\(VT=\frac{1}{x^2+y^2+z^2}+\frac{1}{xy+zx+zy}+\frac{1}{xy+yz+xz}+\frac{2010}{xy+xz+yz}\)
\(\ge\frac{9}{\left(x+y+z\right)^2}+\frac{2010}{xy+yz+xz}\)\(\ge\frac{9}{3^2}+\frac{2010}{3}=1+670=671\left(đpcm\right).\)
Dấu = xay ra khi \(x=y=z=1\)
Cho mình hỏi lầu trên cái, esay là gì thế? Bạn đánh nhầm từ easy phải không?
Lời giải:
Ta cần chứng minh \(\frac{xy}{z}+\frac{yz}{x}+\frac{xz}{y}\geq x^2+y^2+z^2\)
\(\Leftrightarrow \frac{x^2y^2+y^2z^2+z^2x^2}{xyz}\geq \sqrt{3(x^2+y^2+z^2)}\)
\(\Leftrightarrow x^2y^2+y^2z^2+z^2x^2\geq xyz\sqrt{3(x^2+y^2+z^2)}\)
\(\Leftrightarrow (x^2y^2+y^2z^2+z^2x^2)^2\geq 3x^2y^2z^2(x^2+y^2+z^2)\)
\(\Leftrightarrow x^4y^4+y^4z^4+z^4x^4+2x^2y^2z^2(x^2+y^2+z^2)\geq 3x^2y^2z^2(x^2+y^2+z^2)\)
\(\Leftrightarrow x^4y^4+y^4z^4+z^4x^4\geq x^2y^2z^2(x^2+y^2+z^2)\)
\(\Leftrightarrow \frac{1}{2}\left[ (x^2y^2-y^2z^2)^2+(y^2z^2-x^2z^2)^2+(x^2y^2-x^2z^2)^2\right]\geq 0\)
(luôn đúng)
Do đó ta có đpcm.
Dấu bằng xảy ra khi \(x=y=z=1\)