K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2016

\(\hept{\begin{cases}a=x\\b=2y\\c=3z\end{cases}}\Rightarrow a+b+c=3\)

\(Q=\frac{11b^3-a^3}{ab+4b^2}+\frac{11c^3-b^3}{bc+4c^2}+\frac{11a^3-c^3}{ca+4a^2}\)

Cần tìm \(\beta;\gamma\) sau cho \(\frac{11b^3-a^3}{ab+4b^2}\le\gamma b+\beta a\)

\(\Leftrightarrow\frac{11.\left(\frac{b}{a}\right)^3-1}{\frac{b}{a}+4\left(\frac{b}{a}\right)^2}\le\gamma\frac{b}{a}+\beta\)

\(\Leftrightarrow\frac{11t^3-1}{t+4t^2}\le\gamma t+\beta\text{ }\left(t=\frac{b}{a}\right)\)

Dự đoán Q max khi a = b = c nên t = 1;

Tới đây dùng pp hệ số bất định để tìm ra \(\gamma=3;\text{ }\beta=-1\)

Vậy ta cần chứng minh \(\frac{11b^3-a^3}{ab+4b^2}\le3b-a\Leftrightarrow-\frac{\left(a+b\right)\left(a-b\right)^2}{ab+4b^2}\le0\)

4 tháng 9 2020

đoạn sau thêm tham số để làm thì làm sao để tìm được tham số đó ạ, em cũng làm đến đó nhưng không tìm được tham số phù hợp

NV
4 tháng 9 2020

UCT mở rộng: ta sẽ đi tìm m;n sao cho: \(\frac{5b^3-a^3}{ab+3b^2}\le ma+nb\)

\(\Leftrightarrow a^3+ma^2b+\left(3m+n\right)ab^2+\left(3n-5\right)b^3\ge0\) (1)

\(\Leftrightarrow x^3+m.x^2+\left(3m+n\right)x+\left(3n-5\right)\ge0\) với \(x=\frac{a}{b}\)

Dự đoán rằng sẽ phân tích về dạng \(\left(a-b\right)^2.P\left(a;b\right)\) hay \(\left(x-1\right)^2P\left(x\right)\)

Do đó (1) phải có nghiệm \(x=1\)

\(\Rightarrow4m+4n-4=0\Rightarrow n=1-m\)

Thay vào: \(x^3+mx^2+\left(2m+1\right)x-3m-2\ge0\)

Hoocne hạ bậc: \(\left(x-1\right)\left(x^2+\left(m+1\right)x+3m+2\right)\ge0\)

\(\Rightarrow x^2+\left(m+1\right)x+3m+2\) cũng có 1 nghiệm \(x=1\)

\(\Rightarrow4m+4=0\Rightarrow m=-1\Rightarrow n=2\)

10 tháng 6 2019

Đặt \(\hept{\begin{cases}x=a\\2y=b\\3z=c\end{cases}}\left(a;b;c>0\right)\Rightarrow a+b+c=2\)

Khi đó \(S=\Sigma\sqrt{\frac{\frac{ab}{2}}{\frac{ab}{2}+c}}=\Sigma\sqrt{\frac{ab}{ab+2c}}=\Sigma\sqrt{\frac{ab}{ab+\left(a+b+c\right)c}}\)

                                                  \(=\Sigma\sqrt{\frac{ab}{ab+bc+ca+c^2}}=\Sigma\sqrt{\frac{ab}{\left(a+c\right)\left(b+c\right)}}\)

Áp dụng bđt Cô-si có

\(S\le\frac{\Sigma\left(\frac{a}{a+c}+\frac{b}{b+c}\right)}{2}=\frac{3}{2}\)

10 tháng 6 2019

thank đay là đề thi chuyên toán 

27 tháng 2 2020

\(M=x+y+z+\frac{3}{x}+\frac{9}{2y}+\frac{4}{z}\)

\(=\left(\frac{3}{x}+\frac{3x}{4}\right)+\left(\frac{9}{2y}+\frac{y}{2}\right)+\left(\frac{4}{z}+\frac{z}{4}\right)+\left(\frac{x}{4}+\frac{y}{2}+\frac{3z}{4}\right)\)

\(\ge13\)

Dấu "=" xảy ra tại x=2;y=3;z=4

27 tháng 2 2020

Để ý điểm rơi mà làm bạn :)

13 tháng 10 2019

Câu 1:

\(M=\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)=x^2y^2+\frac{1}{x^2y^2}+2=x^2y^2+\frac{1}{256x^2y^2}+\frac{255}{256x^2y^2}+2\)

\(\ge\frac{1}{8}+2+\frac{255}{256x^2y^2}\)

Ta lại có: \(1=x+y\ge2\sqrt{xy}\Leftrightarrow1\ge16x^2y^2\)

\(\Rightarrow M\ge\frac{17}{8}+\frac{255}{16}=\frac{289}{16}\)

Dấu = xảy ra khi x=y=1/2

13 tháng 10 2019

Áp dụng BDT Cauchy-Schwarz: \(\frac{1}{16}\left(\frac{1}{x+y}+\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{x+z}\right)\ge\frac{1}{3x+3y+2z}\)

CMTT rồi cộng vế với vế ta có.\(VT\le\frac{1}{16}\cdot4\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)=\frac{3}{2}\)

Dấu = xảy ra khi x=y=z=1

16 tháng 6 2019

Ta có \(\left(2x^2+y^2+3\right)\left(2+1+3\right)\ge\left(2x+y+3\right)^2\)

=> \(\frac{1}{\sqrt{2x^2+y^2+3}}\le\frac{\sqrt{6}}{2x+y+3}\)

Mà \(\frac{1}{2x+y+3}=\frac{1}{x+x+y+1+1+1}\le\frac{1}{36}\left(\frac{1}{x}+\frac{1}{x}+\frac{1}{y}+3\right)\)

=> \(\frac{1}{\sqrt{2x^2+y^2+3}}\le\frac{\sqrt{6}}{36}\left(\frac{2}{x}+\frac{1}{y}+3\right)\)

Khi đó 

\(P\le\frac{\sqrt{6}}{36}\left(\frac{3}{x}+\frac{3}{y}+\frac{3}{z}+9\right)=\frac{\sqrt{6}}{36}.18=\frac{\sqrt{6}}{2}\)

Dấu bằng xảy ra khi x=y=z=1

Vậy \(MaxP=\frac{\sqrt{6}}{2}\)khi x=y=z=1

19 tháng 5 2020

dễ vãi mà ko giải đc NGU

3 tháng 1 2020

1. \(\hept{\begin{cases}x^2+2y^2=4x-1\\y^2+2x^2=4y-1\end{cases}\Leftrightarrow\hept{\begin{cases}\left(x^2+2y^2\right)-\left(y^2+2x^2\right)=4x-1-\left(4y-1\right)\\\left(x^2+2y^2\right)+\left(y^2+2x^2\right)=4x-1+4y-1\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}y^2-x^2=4x-4y\left(1\right)\\3\left(x^2+y^2\right)=4\left(x+y\right)-2\left(2\right)\end{cases}}\)

Từ ( 1 ) \(\Rightarrow\left(y-x\right)\left(x+y\right)-4\left(x-y\right)=0\Leftrightarrow\left(y-x\right)\left(x+y+4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=y\\x+y=-4\end{cases}}\)

Với x = y thì thay vào ( 2 ), ta được : \(6x^2-8x+2=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=\frac{1}{3}\end{cases}}\)

Với x + y = -4  thay vào ( 2 ), ta được : \(3\left[\left(x+y\right)^2-2xy\right]=4.\left(-4\right)-2\)

\(\Leftrightarrow-6xy=-66\Leftrightarrow xy=11\)

Ta được hệ phương trình : \(\hept{\begin{cases}x+y=-4\\xy=11\end{cases}}\) mà hệ phương trình này vô nghiệm 

2. Ta cần chứng minh BĐT : \(a^3+b^3\ge ab\left(a+b\right)\)   với a,b > 0 

Thật vậy, xét hiệu : 

\(a^3+b^3-ab\left(a+b\right)=a^2\left(a-b\right)+b^2\left(b-a\right)=\left(a-b\right)\left(a^2-b^2\right)=\left(a-b\right)^2\left(a+b\right)\)\(\ge\)0

Áp dụng BĐT trên, ta có : \(x^3+y^3\ge xy\left(x+y\right)\Leftrightarrow x^3+y^3+1\ge xy\left(x+y\right)+xyz=xy\left(x+y+z\right)\)

Tương tự : ....

\(\Rightarrow\frac{1}{x^3+y^3+1}+\frac{1}{y^3+z^3+1}+\frac{1}{x^3+z^3+1}\le\frac{1}{xy\left(x+y+z\right)}+\frac{1}{yz\left(x+y+z\right)}+\frac{1}{xz\left(x+y+z\right)}\)

\(=\frac{x+y+z}{xyz\left(x+y+z\right)}=\frac{1}{xyz}=1\)

Vậy GTLN của biểu thức là 1 khi x = y = z = 1

13 tháng 6 2016

Em mới học lớp 8

13 tháng 6 2016
mới học lớp 1