\(\le1\). Chứng minh rằng : \(\frac{x}{1+y...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2016

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\frac{x}{1+y+xz}=\frac{x\left(x^2+y+\frac{z}{x}\right)}{\left(1+y+xz\right)\left(x^2+y+\frac{z}{x}\right)}\le\frac{x^3+xy+z}{\left(x+y+z\right)^2}\)

\(\le\frac{x+y+z}{\left(x+y+z\right)}=\frac{1}{x+y+z}\)

Tương tự ta cũng có: \(\frac{y}{1+z+xy}\le\frac{1}{x+y+z};\frac{z}{1+x+yz}\le\frac{1}{x+y+z}\)

Cộng theo vế ta có: \(\frac{x}{1+y+xz}+\frac{y}{1+z+xy}+\frac{z}{1+x+yz}\le\frac{1+1+1}{x+y+z}=\frac{3}{x+y+z}\)

 

11 tháng 12 2016

ff

10 tháng 12 2016

Xét A= \(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}=a.\frac{a}{b+c}+b.\frac{b}{c+a}+c.\frac{c}{a+b}\)

\(=a\left(\frac{a}{b+c}+1-1\right)+b\left(\frac{b}{c+a}+1-1\right)+c\left(\frac{c}{a+b}+1-1\right)\)

\(=a\left(\frac{a+b+c}{b+c}-1\right)+b\left(\frac{a+b+c}{c+a}-1\right)+c\left(\frac{a+b+c}{a+b}-1\right)\)

\(=a.\frac{a+b+c}{b+c}-a+b.\frac{a+b+c}{c+a}-b+c.\frac{a+b+c}{a+b}-c\)

\(=\left(a+b+c\right)\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)-\left(a+b+c\right)\) =0

20 tháng 4 2017

x=2007,5

7 tháng 12 2020

a,\(\frac{3}{2x^2+2x}+\frac{2x-1}{x^2-1}-\frac{2}{x}\)

\(=\frac{3}{2x\left(x+1\right)}+\frac{2x-1}{\left(x-1\right)\left(x+1\right)}-\frac{2}{x}\)

\(=\frac{3\left(x-1\right)}{2x\left(x+1\right)\left(x-1\right)}+\frac{\left(2x-1\right).2x}{2x\left(x-1\right)\left(x+1\right)}-\frac{2.2\left(x+1\right)\left(x-1\right)}{2x\left(x+1\right)\left(x-1\right)}\)

\(=\frac{3x-3}{2x\left(x+1\right)\left(x-1\right)}+\frac{4x^2-2x}{2x\left(x-1\right)\left(x+1\right)}-\frac{4x^2-4}{2x\left(x+1\right)\left(x-1\right)}\)

\(=\frac{3x-3+4x^2-2x-4x^2+4}{2x\left(x+1\right)\left(x-1\right)}\)

\(=\frac{x+1}{2x\left(x+1\right)\left(x-1\right)}=\frac{1}{2x\left(x-1\right)}\)

\(b,\frac{3x}{5x+5y}-\frac{x}{10x-10y}\)

\(=\frac{3x}{5\left(x+y\right)}-\frac{x}{10\left(x-y\right)}\)

\(=\frac{3x.2\left(x-y\right)}{10\left(x+y\right).\left(x-y\right)}-\frac{x.\left(x+y\right)}{10\left(x-y\right).\left(x+y\right)}\)

\(=\frac{6x^2-6xy}{10\left(x+y\right)\left(x-y\right)}-\frac{x^2+xy}{10\left(x-y\right)\left(x+y\right)}\)

\(=\frac{6x^2-6xy-x^2+xy}{10\left(x+y\right)\left(x-y\right)}\)

\(=\frac{5x^2-5xy}{10\left(x+y\right)\left(x+y\right)}\)

\(=\frac{5x\left(x-y\right)}{10\left(x-y\right)\left(x+y\right)}=\frac{x}{2\left(x+y\right)}\)

15 tháng 8 2016

\(x^2+4y^2+z^2-2x-6z+8y+15\)

\(=\left(x^2-2x+1\right)+\left(4y^2+8y+4\right)+\left(z^2-6z+9\right)+1\)

\(=\left(x-1\right)^2+4\left(y+1\right)^2+\left(z-3\right)^2+1\ge0\)

=>đpcm

15 tháng 8 2016

x2+4y2+z2-2x-6z+8y+15

=x2+4y2+z2-2x-6z+8y+1+1+4+9

=(x2-2x+1)+(4y2+8y+4)+(z2-6z+9)+1

=(x-1)2+4(y+1)2+(z-3)2+1

Ta thấy:\(\begin{cases}\left(x-1\right)^2\\4\left(y+1\right)^2\\\left(z-3\right)^2\end{cases}\ge0\)

\(\Rightarrow\left(x-1\right)^2+4\left(y+1\right)^2+\left(z-3\right)^2\ge0\)

\(\Rightarrow\left(x-1\right)^2+4\left(y+1\right)^2+\left(z-3\right)^2+1\ge0+1=1>0\)

Đpcm