Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{Ta có: }x-y-z=0\Rightarrow x=y+z\)
\(y=x-z\)
\(z=x-y\)
\(\text{Mặt khác: }A=\left(1-\frac{z}{x}\right)\left(1-\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\)
\(=\left(\frac{x}{x}-\frac{z}{x}\right)\left(\frac{y}{y}-\frac{x}{y}\right)\left(\frac{z}{z}+\frac{y}{z}\right)\)
\(=\frac{x-z}{x}.\frac{y-x}{y}.\frac{y+z}{z}\)
\(=\frac{x-z}{y+z}.\frac{y-x}{x-z}.\frac{y+z}{x-y}\)
\(=\frac{x-z}{y+z}.\frac{y-x}{x-z}.\frac{y+z}{-\left(y-x\right)}\)
\(=-1\)
#)Giải :
\(A=\left(1-\frac{z}{y}\right).\left(1-\frac{x}{y}\right).\left(1-\frac{y}{z}\right)\)
\(A=\frac{x-z}{x}.\frac{x+y}{z}.\frac{z-y}{x}\)
\(x+y-z=0\Leftrightarrow\hept{\begin{cases}x+y=z\\x-z=-y\\z-y=x\end{cases}}\)
Thay vào A, ta được :
\(A=\frac{-y}{x}.\frac{z}{y}.\frac{x}{z}=\frac{-yzx}{xyz}=-1\)
~Will~be~Pens~
Ta có: x - y - z = 0 \(\Rightarrow\begin{cases}x-z=y\\y-x=-z\\z+y=x\end{cases}\)
\(A=\left(1-\frac{z}{x}\right).\left(1-\frac{x}{y}\right).\left(1+\frac{y}{z}\right)\)
\(A=\frac{x-z}{x}.\frac{y-x}{y}.\frac{z+y}{z}\)
\(A=\frac{y}{x}.\frac{-z}{y}.\frac{x}{z}=-1\)
áp dụng tính chất của dãy tỉ số bằng nhau ta có:\(\frac{ }{ }\)
y+z-x/x=z+x-y/y=x+y-z/z
=y+z-x+z+x-y+x+y-z/x+y+z
=(y-y)+(z-z)-(x-x)+z+x+y/x+y+z
=0+0+0+x+y+z/x+y+z=1
\(\Leftrightarrow\)x=y=z (*)
thay (*) vào B ta có:
B=(1+x/x)(1+x/x)(1+x/x)
=2.2.2=8
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(...=\frac{y+z-x+z+x-y+x+y-z}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)( vì x + y + z \(\ne\)0 )
\(\Rightarrow\hept{\begin{cases}\frac{y+z-x}{x}=1\\\frac{z+x-y}{y}=1\\\frac{x+y-z}{z}=1\end{cases}}\Rightarrow\hept{\begin{cases}y+z-x=x\\z+x-y=y\\x+y-z=z\end{cases}}\Rightarrow\hept{\begin{cases}y+z=2x\\z+x=2y\\x+y=2z\end{cases}}\Rightarrow x=y=z\)
Thế x = y = z vào B ta được :
\(B=\left(1+\frac{y}{y}\right)\left(1+\frac{x}{x}\right)\left(1+\frac{z}{z}\right)=\left(1+1\right)\left(1+1\right)\left(1+1\right)=2\cdot2\cdot2=8\)
bạn chép lại dề nha
ta có x-y-z =0
nên x-z=0
x-y=z tương tự với y-x ==-z
-y-z=-x tương tự với y+z=x
thay vào ta có
bạn chép lại biểu thức tại đây
(x-z/x) (y-x/y) (z+y/z)
=y/x (-z/y ) x/z
= -zxy/zyx
= -1
phần nào ko hiểu ở bài bạn có thể hỏi mình
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x+y-2014z}{z}=\frac{y+z-2014x}{x}=\frac{z+x-2014y}{y}=\frac{\left(-2012\right)\left(x+y+z\right)}{x+y+z}=-2012\)
Ta có: \(\frac{x+y-2014z}{z}=-2012\Rightarrow x+y-2014z=-2012z\Leftrightarrow x+y=2z\)
Tương tự: \(y+z=2x,z+x=2y\)
Khi đó: \(A=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)=\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz}=\frac{2x.2y.2z}{xyz}=8\)
Vậy A=8.
Nguyễn Tất Đạt thiếu 1 trường hợp nha bạn
\(x+y+z=0\)
\(\Rightarrow\hept{\begin{cases}x=-y-z\\y=-x-z\\z=-x-y\end{cases}}\)
\(A=\left(1+\frac{-y-z}{y}\right).\left(1+\frac{-x-z}{z}\right).\left(1+\frac{-x-y}{x}\right)\)
\(A=\left(-\frac{z}{y}\right).\left(\frac{-x}{z}\right).\left(\frac{-y}{x}\right)=-1\)
Từ\(\frac{y+z-x}{x}\)=\(\frac{z+x-y}{y}\)= \(\frac{x+y-z}{z}\)\(\Rightarrow\frac{\left(y+z-x\right)+\left(z+x-y\right)+\left(x+y-z\right)}{x+y+z}\) ( t/c dãy tỉ số bằng nhau)
\(\Rightarrow\frac{x+y+z}{x+y+z}=1\)
Khi đó: B=\(\left(1+\frac{x}{y}\right)=\left(1+\frac{y}{z}\right)=\left(1+\frac{z}{x}\right)\) \(\Rightarrow\frac{y+x}{y}=\frac{z+y}{z}=\frac{x+z}{x}\) ( Quy đồng từng phân thức)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có: \(\frac{y+x+z+y+x+z}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}\)
\(=x+y+z\)
\(=1\)
Vậy B =1
Áp dụng tính chất dãy tỉ số bằng nhau, ta có :
\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}=\frac{y+z-x+z+x-y+x+y-z}{x+y+z}\)
\(=\frac{x+y+z}{x+y+z}=1\Rightarrow y+z-x=x;z+x-y=y;x+y-z=z\)
\(\Rightarrow x=y=z\)
\(\Rightarrow B=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)=\left(1+1\right)\left(1+1\right)\left(1+1\right)\)
\(=2.2.2=8\)
Áp dụng tính chất dãy tỉ số bằng nhau , ta có
y + z - x / x = z + x - y / y = x + y - z / z = y + z - x + z +x - y + x + y - z / x + y + z = x + y + z / x + y + z
TH1 : x + y + z = 0
=> x + y = - z ; y + z = - x và x + z = -y
Ta có : B = ( 1 + x / y ) ( 1 + y / z ) ( 1 + z / x )
= ( x + y / y ) ( z + y / z ) ( x + z / x ) ( 1 )
= - z / y . ( - x / z ) ( -y / x )
= - 1
TH2 : x + y + z khác 0
Do đó y + z - x / x = z + x - y / y = x + y - z / z = x + y + z / x + y + z = 1
thì y + z - x / x = 1 => y + z - x = x => y + z = 2x ( 2 )
z + x - y / y = 1 z + x - y = y z + x = 2y ( 3 )
x + y - z / z = 1 x + y - z = z x + y = 2z ( 4 )
Thay ( 2 ) , ( 3 ) , ( 4 ) vào ( 1 ) ta có
B = 2x/y . 2y / z . 2z / x
= 2 . 2 . 2 = 8
Vậy B = - 1 khi x + y + z = 0
B = 8 khi x + y + z khác 0
[ xin lỗi nha , tại mình không biết viết phân số ]
Bằng -1
Trên luyện toán VIOLYMPIC cũng có
Mấy câu này mấy bạn nên thay:
Thay x = 3 , y = 2 , z = 1. (3-2-1=0)
Đoạn sau bấm máy tính: B = (1 - 1/3)(1 - 3/2)(1 - 2/1)
= 1/3