K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 5 2022

Đặt \(y+z=p\)

Khi đó \(M=\left(x+p\right)^3+\left(x-p\right)^3\)\(=x^3+3x^2p+3xp^2+p^3+x^3-3x^2p+3xp^2-p^3\)\(=2x^3+6xp^2=2x^3+6x\left(y+z\right)^2=N\) (vì \(y+z=p\))

 Từ đó ta có đpcm.

25 tháng 1 2022

giả sử cả 3 số xyz đều nhỏ hơn 1 

=>x+y+z<1+1+1=3

ta có x+y+z>\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\)=\(\dfrac{xy+yz+xz}{xyz}\)\(\ge\)\(\dfrac{3\sqrt[3]{\left(abc\right)^2}}{abc}\) =\(\dfrac{3}{\sqrt[3]{abc}}=\dfrac{3}{\sqrt[3]{1}}=3\) vậy x+y+z >3

từ đó sẽ có ít nhất 1 trong 3 số lớn hơn 1

7 tháng 7 2021

Ta có: \(\frac{x^3+y^3+z^3-3xyz}{x+y+z}\)

\(=\frac{\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz}{x+y+z}\)

\(=\frac{\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)}{x+y+z}\)

\(=\frac{\left(x+y+z\right)\left(x^2+y^2+z^2+2xy-yz-zx-3xy\right)}{x+y+z}\)

\(=x^2+y^2+z^2-xy-yz-zx=\frac{1}{2}\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]\ge0\left(\forall x,y,z\right)\)

=> đpcm

4 tháng 10 2019

ta có thể cm x^3+y^3+z^3=3xyz =>(x+y+z)(a^2+b^2+c^2-ab-ac-bc)=0

=>a^2+b^2+c^2-ab-ac-bc=0

nhân cả 2 vế với 2 ta đc

2.(x^2+y^2+z^2-xz-yz-yx)=2.0=0

=2x^2+2y^2+2z^2-2xy-2xz-2yz

=>(y^2-2yx+x^2)+(y^2-2xz+z^2)+(x^2-2xz+z^2)=0

<=> (y-x)^2+(y-z)^2+(x-z)^2=0

mà ta lại có  (y-x)^2>=0 ;  (y-z)^2>=0 ;  (x-z)^2>=0

 và (y-x)^2+(y-x)^2+(x-z)^2=0

 <=>(y-x)^2=0<=>y=x

  <=>(y-z)^2=0 <=>y=z

  <=>(x-z)^2=0<=>x=z

=>x=y=z

25 tháng 12 2015

ta có x+y+z=0

=> x+y=-z

=> (x+y)^3=(-z)^3

=> x^3+y^3+3xy(x+y)=-z^3

x^3+y^3+z^3+3xy(x+y)=0

x^3+y^3+z^3-3xyz=0

=> x^3+y^3+z^3=3xyz

kagamine rin len đúng rồi đó

11 tháng 11 2019

Làm theo cách giải trình :P

Ta có:

\(\left(x+y+z\right)^2=1^2\)

\(x^2+y^2+z^2+2.\left(xy+yz+xz\right)=1\)

\(1+2.\left(xy+yz+xz\right)=1\)

\(2.\left(xy+yz+xz\right)=0\Rightarrow xy+yz+xz=0\)

\(\left(x+y+z\right).\left(x^2+y^2+z^2\right)=1.1\)

\(x^3+y^3+z^3+x^2.\left(y+z\right)+y^2.\left(x+z\right)+2^2.\left(x+y\right)=1\)

\(1+x^2y+x^2z+y^2x+y^2z+z^2x+z^2y=1\)

\(xy.\left(x+y\right)+xz.\left(x+z\right)+yz.\left(y+z\right)=0\)

\(xy.\left(x+y+z-z\right)+xz.\left(x+y+z-y\right)+yz.\left(x+y+z-x\right)=0\)

\(xy.\left(1-z\right)+xz.\left(1-y\right)+yz.\left(1-x\right)=0\)

\(xy+xz+yz-3xyz=0\)

Khi: \(xy+yz+xz0,xyz\)cũng bằng 0

đpcm.

25 tháng 9 2021

\(a,\left(x+y+z\right)^3-x^3-y^3-z^3\\ =\left[\left(x+y\right)+z\right]^3-x^3-y^3-z^3\\ =\left(x+y\right)^3+z^3+3z\left(x+y\right)\left(x+y+z\right)-x^3-y^3-z^3\\ =x^3+y^3+z^3+3xy\left(x+y\right)+3z\left(x+y\right)\left(x+y+z\right)-x^3-y^3-z^3\\ =\left(x+y\right)\left(3xy+3xz+3yz+3z^2\right)\\ =3\left(x+y\right)\left[x\left(y+z\right)+z\left(y+z\right)\right]\\ =3\left(x+y\right)\left(y+z\right)\left(x+z\right)\)

 

25 tháng 9 2021

\(b,x^3+y^3+z^3-3xyz\\ =\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\\ =\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2\right)-3xy\left(x+y+z\right)\\ =\left(x+y+z\right)\left(x^2+y^2+z^2-xz-yz+2xy-3xy\right)\\ =0\left(x^2+y^2+z^2-xz-yz-xy\right)=0\\ \Leftrightarrow x^3+y^3+z^3=3xyz\)