Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(y+z=p\)
Khi đó \(M=\left(x+p\right)^3+\left(x-p\right)^3\)\(=x^3+3x^2p+3xp^2+p^3+x^3-3x^2p+3xp^2-p^3\)\(=2x^3+6xp^2=2x^3+6x\left(y+z\right)^2=N\) (vì \(y+z=p\))
Từ đó ta có đpcm.
giả sử cả 3 số xyz đều nhỏ hơn 1
=>x+y+z<1+1+1=3
ta có x+y+z>\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\)=\(\dfrac{xy+yz+xz}{xyz}\)\(\ge\)\(\dfrac{3\sqrt[3]{\left(abc\right)^2}}{abc}\) =\(\dfrac{3}{\sqrt[3]{abc}}=\dfrac{3}{\sqrt[3]{1}}=3\) vậy x+y+z >3
từ đó sẽ có ít nhất 1 trong 3 số lớn hơn 1
Ta có: \(\frac{x^3+y^3+z^3-3xyz}{x+y+z}\)
\(=\frac{\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz}{x+y+z}\)
\(=\frac{\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)}{x+y+z}\)
\(=\frac{\left(x+y+z\right)\left(x^2+y^2+z^2+2xy-yz-zx-3xy\right)}{x+y+z}\)
\(=x^2+y^2+z^2-xy-yz-zx=\frac{1}{2}\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]\ge0\left(\forall x,y,z\right)\)
=> đpcm
ta có thể cm x^3+y^3+z^3=3xyz =>(x+y+z)(a^2+b^2+c^2-ab-ac-bc)=0
=>a^2+b^2+c^2-ab-ac-bc=0
nhân cả 2 vế với 2 ta đc
2.(x^2+y^2+z^2-xz-yz-yx)=2.0=0
=2x^2+2y^2+2z^2-2xy-2xz-2yz
=>(y^2-2yx+x^2)+(y^2-2xz+z^2)+(x^2-2xz+z^2)=0
<=> (y-x)^2+(y-z)^2+(x-z)^2=0
mà ta lại có (y-x)^2>=0 ; (y-z)^2>=0 ; (x-z)^2>=0
và (y-x)^2+(y-x)^2+(x-z)^2=0
<=>(y-x)^2=0<=>y=x
<=>(y-z)^2=0 <=>y=z
<=>(x-z)^2=0<=>x=z
=>x=y=z
ta có x+y+z=0
=> x+y=-z
=> (x+y)^3=(-z)^3
=> x^3+y^3+3xy(x+y)=-z^3
x^3+y^3+z^3+3xy(x+y)=0
x^3+y^3+z^3-3xyz=0
=> x^3+y^3+z^3=3xyz
Làm theo cách giải trình :P
Ta có:
\(\left(x+y+z\right)^2=1^2\)
\(x^2+y^2+z^2+2.\left(xy+yz+xz\right)=1\)
\(1+2.\left(xy+yz+xz\right)=1\)
\(2.\left(xy+yz+xz\right)=0\Rightarrow xy+yz+xz=0\)
\(\left(x+y+z\right).\left(x^2+y^2+z^2\right)=1.1\)
\(x^3+y^3+z^3+x^2.\left(y+z\right)+y^2.\left(x+z\right)+2^2.\left(x+y\right)=1\)
\(1+x^2y+x^2z+y^2x+y^2z+z^2x+z^2y=1\)
\(xy.\left(x+y\right)+xz.\left(x+z\right)+yz.\left(y+z\right)=0\)
\(xy.\left(x+y+z-z\right)+xz.\left(x+y+z-y\right)+yz.\left(x+y+z-x\right)=0\)
\(xy.\left(1-z\right)+xz.\left(1-y\right)+yz.\left(1-x\right)=0\)
\(xy+xz+yz-3xyz=0\)
Khi: \(xy+yz+xz0,xyz\)cũng bằng 0
đpcm.
\(a,\left(x+y+z\right)^3-x^3-y^3-z^3\\ =\left[\left(x+y\right)+z\right]^3-x^3-y^3-z^3\\ =\left(x+y\right)^3+z^3+3z\left(x+y\right)\left(x+y+z\right)-x^3-y^3-z^3\\ =x^3+y^3+z^3+3xy\left(x+y\right)+3z\left(x+y\right)\left(x+y+z\right)-x^3-y^3-z^3\\ =\left(x+y\right)\left(3xy+3xz+3yz+3z^2\right)\\ =3\left(x+y\right)\left[x\left(y+z\right)+z\left(y+z\right)\right]\\ =3\left(x+y\right)\left(y+z\right)\left(x+z\right)\)
\(b,x^3+y^3+z^3-3xyz\\ =\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\\ =\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2\right)-3xy\left(x+y+z\right)\\ =\left(x+y+z\right)\left(x^2+y^2+z^2-xz-yz+2xy-3xy\right)\\ =0\left(x^2+y^2+z^2-xz-yz-xy\right)=0\\ \Leftrightarrow x^3+y^3+z^3=3xyz\)