Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT (a - b)² ≥ 0 → a² + b² ≥ 2ab ta có:
+) x² + y² ≥ 2xy
x² + 1 ≥ 2x
+) y² + z² ≥ 2yz
y² + 1 ≥ 2y
+) z² + x² ≥ 2xz
z² + 1 ≥ 2z
=> 2 ( x2 + y2 + z2 ) ≥ 2( xy + yz + xz )
cộng các BĐT trên ta có
3( x2 + y2 + z2 ) + 3 ≥ 2( x + y + z + xy + yz + xz)
=> GTNN của P = 3 khi và chỉ khi x=y=z=1
Cách 1:
Ta có \(A=xy+yz+2zx\)
\(\Rightarrow A+1=x^2+y^2+z^2+xy+yz+2zx\)
\(=\left(x+z+\frac{y}{2}\right)^2+\frac{3}{4}y^2\ge0\)
\(\Rightarrow A\ge-1\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}y=0\\x=-z\end{cases}}\)
Ta có : \(\left(x+y+z\right)^2\ge0\)
\(\Rightarrow xy+yz+zx\ge\frac{-\left(x^2+y^2+z^2\right)}{2}=-\frac{1}{2}\)
Lại có : \(\left(x+z\right)^2\ge0\Rightarrow xz\ge\frac{-\left(x^2+z^2\right)}{2}=\frac{y^2-1}{2}\ge-\frac{1}{2}\)
Khi đó : \(xy+yz+2zx\ge-1\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}y=o\\x^2=z^2=\frac{1}{2}\end{cases}}\)
Từ x2+12x \(\ge2x\)
y2+12y\(\ge2y\)
z2+12z\(\ge2z\)
2(x2+y2+z2) \(\ge\)2(xy+yz+xz)
cộng các BĐT trên ta có
3(x2+y2+z2)+3 \(\ge\) 2(x+y+z+xy+yz+xz)
=> \(x^2+y^2+z^2\ge3\) => GTNN của \(x^2+y^2+z^2=3\)
đúng nhé
ta có \(xy\le\left(\frac{x+y}{2}\right)^2\) và \(yz+xz=z\left(x+y\right)\le\frac{z^2+\left(x+y\right)^2}{2}\)
\(\Rightarrow5=xy+yz+xz\le\left(\frac{x+y}{2}\right)^2+\frac{z^2+\left(x+y\right)^2}{2}=\frac{3}{4}\left(x+y\right)^2+\frac{1}{2}z^2\)
Xét \(3x^2+3y^2+z^2\ge\frac{3}{2}\left(x+y\right)^2+z^2=2\left(\frac{3}{4}\left(x+y\right)^2+\frac{1}{2}z^2\right)\ge2\cdot5=10\)
dấu "=" xảy ra khi \(\hept{\begin{cases}x=y\\z=x+y\end{cases}\Leftrightarrow\hept{\begin{cases}x=y=\pm1\\z=\pm2\end{cases}}}\)