Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Yến Trần - Toán lớp 8 - Học toán với OnlineMath
ý em là bài này hả ?
Cho các số dương x,y,z thoã mãn x+y+z=3 Tìm GTNN của 2(x^3+y^3+z^3)-(x^2+y^2+z^2)+2...
bài làm
ta có : x^3+y^3+z^3-3xyz=(x+y+z)(x^2+y^2+z^2-xy-... bạn tự chứng minh nha, khai triển vế phải ra là xong :D)
sau đó áp dụng điều kiện x+y+z=3 rồi thay vào biểu thức ban đầu ta có
BT= 5(x^2+y^2+z^2)-6(xy+yz+zx) + 8xyz +3
= 8(x^2+y^2+z^2)-3(x+y+z)^2 + 8xyz +3
sau đó bạn áp dụng BDT xyz>=(x+y-z)(z+x-y)(y+z-x) sau đó thế x+y+z=3 và khai triển ra ta được
xyz>=(3-2z)(3-2y)(3-2z)=27-18(x+y+z)+1... -8xyz
thay x+y+z=3 ta được:
9xyz >=12(xy+yz+zx)-27
>> BT + xyz >= 8(x^2+y^2+z^2)-27+3+ 12(xy+yz+zx)-27=2(x^2+y^2+z^2)+6(x+y+z)^...
lại có 3(x^2+y^2+z^2)>=(x+y+z)^2 ( BDT Bunhiacopxki) >> (x^2+y^2+z^2)>=3
27xyz<=(x+y+z)^3>> xyz<=1
vậy BT + 1>= BT +xyz >= 6+ 54-51 <> BT >=8. ĐT khi x=y=z=1
Let \(\left(\dfrac{1}{x};\dfrac{1}{y};\dfrac{1}{z}\right)=\left(a;b;c\right)\) we need prove:
\(\left\{{}\begin{matrix}a+b+c=1\\a^4+b^4+c^4\ge abc\\a,b,c\ne0\end{matrix}\right.\)
By AM-GM we have: \(\left\{{}\begin{matrix}a^4+b^4\ge2\sqrt{a^4b^4}=2a^2b^2\\b^4+c^4\ge2\sqrt{b^4c^4}=2b^2c^2\\c^4+a^4\ge2\sqrt{c^4a^4}=2c^2a^2\end{matrix}\right.\)
\(\Rightarrow a^4+b^4+c^4\ge a^2b^2+b^2c^2+c^2a^2\left(1\right)\)
By AM-GM we have:
\(\left\{{}\begin{matrix}a^2b^2+b^2c^2=b^2\left(a^2+c^2\right)\ge b^2\cdot2\sqrt{a^2c^2}=2b^2ac\\b^2c^2+c^2a^2=c^2\left(b^2+a^2\right)\ge c^2\cdot2\sqrt{b^2a^2}=2c^2ab\\c^2a^2+a^2b^2=a^2\left(b^2+c^2\right)\ge a^2\cdot2\sqrt{b^2c^2}=2a^2bc\end{matrix}\right.\)
\(\Rightarrow a^2b^2+b^2c^2+c^2a^2\ge b^2ac+c^2ab+a^2bc\)
\(=abc\left(a+b+c\right)=abc\left(a+b+c=1\right)\left(2\right)\)
From \((1);(2)\) we are done !!
Với x ; y > 0 , cần c/m : \(x^3+y^3\ge xy\left(x+y\right)\)
Ta có : \(x^3+y^3-xy\left(x+y\right)=\left(x+y\right)\left(x^2-xy+y^2-xy\right)=\left(x+y\right)\left(x-y\right)^2\ge0\)
( điều này luôn đúng với mọi x ; y > 0 )
=> BĐT được c/m
Áp dụng vào bài toán , ta có :
\(\frac{1}{x^3+y^3+xyz}+\frac{1}{y^3+z^3+xyz}+\frac{1}{x^3+z^3+xyz}\le\frac{1}{xy\left(x+y\right)+xyz}+\frac{1}{yz\left(y+z\right)+xyz}+\frac{1}{xz\left(x+z\right)+xyz}=\frac{1}{xy\left(x+y+z\right)}+\frac{1}{yz\left(x+y+z\right)}+\frac{1}{xz\left(x+y+z\right)}=\frac{x+y+z}{xyz\left(x+y+z\right)}=\frac{1}{xyz}\)
Dấu " = " xảy ra \(\Leftrightarrow x=y=z;x,y,z>0\)