Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Áp dụng bđt cosi ta có :
2xy.(x^2+y^2) < = (2xy+x^2+y^2)^2/4 = (x+y)^4/4 = 2^4/4 = 4
<=> xy.(x^2+y^2) < = 2
=> ĐPCM
Dấu "=" xảy ra <=> x=y=1
Vậy ............
Tk mk nha
b, Có : x.y < = (x+y)^2/4 = 2^2/4 = 1
<=> 2xy < = 2
Ta có : 1/x^2+y^2 + 1/xy = 1/x^2+y^2 + 1/2xy + 1/2xy >= \(\frac{9}{x^2+y^2+2xy+2xy}\)
= \(\frac{9}{\left(x+y\right)^2+2xy}\)
< = \(\frac{9}{2^2+2}\)= 3/2
=> ĐPCM
Dấu "=" xảy ra <=> x=y=1
TA có x+y=1=>x=1-y=>xy=y(1-y)=y-y^2=-(y^2-y+1/4)+1/4=-(y-1/2)^2+1/4<=1/4
=>2xy<=1/2=>1-2xy>=1/2 . rồi bạn tiếp tục cm như bài cũ
Áp dụng BĐT Schwarz:
\(\frac{1}{x^2+xy}+\frac{1}{y^2+xy}\ge\frac{\left(1+1\right)^2}{x^2+2xy+y^2}=\frac{4}{\left(x+y\right)^2}=4\)
Dấu = xaỷ ra khi x=y=1/2
BĐT schwarz mk chưa học đến bn có thể giúp mình cách khác đc ko
\(\dfrac{x^2+y^2}{x-y}=\dfrac{\left(x-y\right)^2+2xy}{x-y}=\dfrac{\left(x-y\right)^2+2}{x-y}=x-y+\dfrac{2}{x-y}\ge2\sqrt{\dfrac{2\left(x-y\right)}{\left(x-y\right)}}=2\sqrt{2}\)