Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta co:\(x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}=\frac{9}{3}=3\) ; \(xyz\le\frac{\left(x+y+z\right)^3}{27}=\frac{27}{27}=1\)
\(P=x^4+y^4+z^4+12\left(1-z-y+yz-x+xz+xy-xyz\right)\)
\(=x^4+y^4+z^4+12-12xyz-12\left(x+y+z\right)+12\left(xy+yz+zx\right)\)
\(\ge\frac{\left(x^2+y^2+z^2\right)^2}{3}+12-12.\frac{\left(x+y+z\right)^3}{27}-12.3+12\left(xy+yz+zx\right)\)
\(\ge3+12-12.1-36+4.\left(xy+yz+zx\right)\left(x+y+z\right)\)
\(\ge-33+4.\left(xy+yz+zx\right)\left(\frac{x+y+z}{xyz}\right)\)
\(=-33+4.\left(xy+yz+zx\right)\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)\ge-33+4\left(xy.\frac{1}{xy}+yz.\frac{1}{yz}+zx.\frac{1}{zx}\right)^2\)
\(=-33+4\left(1+1+1\right)^2=-33+36=3\)
Dau '=' xay ra khi \(x=y=z=1\)
Vay \(P_{min}=3\)khi \(x=y=z=1\)
M là số lớn nhất trong các số x1+x2x2+x3,x3+x4,x4+x5,
suy ra;3M >=(x1+x2)+(x2+x3)+(x4+x5)
suy ra 3M >=300+X2
suy ra M>=100+X2/3>=100
Với x2=x4=0,x1=x3=x5=100 thì M =100
Vậy GTNN của M =100
\(M=\left(x^2+y^2\right)^2-2x^2y^2\)
\(M=\left[\left(x+y\right)^2-2xy\right]^2-2x^2y^2\)
Áp dụng BĐT Cauchy:
\(x+y\ge2\sqrt{xy}\)\(\Rightarrow xy\le\frac{1}{4}\)
\(\Rightarrow M\ge\left[1-\frac{1}{2}\right]^2-2.\frac{1}{16}\)\(=\frac{1}{8}\)
\(M_{min}=\frac{1}{8}\Leftrightarrow x=y=\frac{1}{2}\)
\(y-x=1\Rightarrow x=y-1\)
\(\Rightarrow x^2+y^2=\left(y-1\right)^2+y^2\)
\(=y^2-2y+1+y^2\)
\(=2y^2-2y+1\)
\(=2\left(y^2-y+\frac{1}{2}\right)\)
\(=2\left(y^2-2y\frac{1}{2}+\frac{1}{4}\right)+\frac{1}{2}\)
\(=2\left(y-\frac{1}{2}\right)^2+\frac{1}{2}\ge\frac{1}{2}\forall y\)
Dấu"=" xảy ra khi \(2\left(y-\frac{1}{2}\right)^2=0\Rightarrow y=\frac{1}{2}\)
Vì \(y-x=1\)nên
\(\Rightarrow\frac{1}{2}-x=1\Rightarrow x=-\frac{1}{2}\)
Vậy \(Min_A=\frac{1}{2}\Leftrightarrow x=-\frac{1}{2};y=\frac{1}{2}\)
Áp dụng bđt Bunhiacopxki
\(\left(x+y\right)^2\le\left(x^2+y^2\right)\left(1+1\right)=2.2=4\)
<=>\(-2\le x+y\le2\)
GTNN của x+y là -2 khi x=y=-1
GTLN của x+y là 2 khi x=y=1
\(x>0\)
\(C=x+\dfrac{1}{4x}+\dfrac{x}{\left(2x+1\right)^2}=\dfrac{4x^2+1}{4x}+\dfrac{x}{\left(2x+1\right)^2}\)
-Ta đặt \(A=T=4x^2+1;B=4x\) thì ta có:
\(A\ge B\Rightarrow A+T\ge B+T\) (do \(T>0\))\(\Rightarrow\dfrac{A+T}{B+T}\ge1\)
-Do đó: \(C=\dfrac{4x^2+1}{4x}+\dfrac{x}{\left(2x+1\right)^2}\ge\text{}\dfrac{4x^2+1+4x^2+1}{4x+4x^2+1}+\dfrac{x}{\left(2x+1\right)^2}=\dfrac{2\left(4x^2+1\right)}{\left(2x+1\right)^2}+\dfrac{8x}{\left(2x+1\right)^2}-\dfrac{7x}{\left(2x+1\right)^2}=\dfrac{2\left(2x+1\right)^2}{\left(2x+1\right)^2}-\dfrac{7x}{\left(2x+1\right)^2}=2-\dfrac{7x}{\left(2x+1\right)^2}\)
-Áp dụng BĐT AM-GM ta có:
\(C\ge2-\dfrac{7x}{\left(2x+1\right)^2}\ge2-\dfrac{7x}{4.2x}=2-\dfrac{7}{8}=\dfrac{9}{8}\)
\(C=\dfrac{9}{8}\Leftrightarrow x=\dfrac{1}{2}\)
-Vậy \(C_{min}=\dfrac{9}{8}\)
Có: \(x^2+y^2\ge2xy\)
\(\Leftrightarrow2\left(x^2+y^2\right)\ge\left(x+y\right)^2=1\)
\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)
Có: \(x^4+y^4\ge2x^2y^2\)
\(\Leftrightarrow2\left(x^4+y^4\right)\ge\left(x^2+y^2\right)^2\ge\left(\frac{1}{2}\right)^2=\frac{1}{4}\)
Suy ra: \(x^4+y^4\ge\frac{1}{8}\)
Vậy min M=1/8 khi \(x=y=\frac{1}{2}\)