Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{xy\sqrt{z-1}+xz\sqrt{y-2}+yz\sqrt{x-3}}{xyz}\\ =\frac{xy\sqrt{z-1}}{xyz}+\frac{xz\sqrt{y-2}}{xyz}+\frac{yz\sqrt{x-3}}{xyz}\\ =\frac{\sqrt{z-1}}{z}+\frac{\sqrt{y-2}}{y}+\frac{\sqrt{x-3}}{x}\\ =\frac{2\sqrt{z-1}}{2z}+\frac{2\sqrt{2}\sqrt{y-2}}{2\sqrt{2}y}+\frac{2\sqrt{3}\sqrt{x-3}}{2\sqrt{3}x}\)
Áp dụng BDT Cô-si với 2 số không âm:
\(\Rightarrow\frac{2\sqrt{z-1}}{2z}+\frac{2\sqrt{2}\sqrt{y-2}}{2\sqrt{2}y}+\frac{2\sqrt{3}\sqrt{x-3}}{2\sqrt{3}x}\\ \le\frac{1+\left(z-1\right)}{2z}+\frac{2+\left(y-2\right)}{2\sqrt{2}y}+\frac{3+\left(x-3\right)}{2\sqrt{3}x}\\ =\frac{1}{2}+\frac{1}{2\sqrt{2}}+\frac{1}{2\sqrt{3}}=\frac{1}{2}+\frac{\sqrt{2}}{4}+\frac{\sqrt{3}}{6}\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}z-1=1\\y-2=2\\x-3=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}z=2\\y=4\\x=6\end{matrix}\right.\)
Vậy.......
Theo giả thiết \(x-y>0\). Do đó theo bất đẳng thức Cô-Si ta có
\(\frac{x^2+y^2}{x-y}=\frac{\left(x-y\right)^2+2xy}{x-y}=\left(x-y\right)+\frac{2}{x-y}\ge2\sqrt{\left(x-y\right)\cdot\frac{2}{x-y}}=2\sqrt{2}.\)
Đặt biểu thức trên là A
\(A=x^2+y^2+\left(\frac{xy-1}{x-y}\right)^2\)
\(=\left(x-y\right)^2+\frac{\left(xy-1\right)^2}{\left(x-y\right)^2}+2xy\ge2\sqrt{\left(x-y\right)^2\frac{\left(xy-1\right)^2}{\left(x-y\right)^2}}+2xy\)
\(=2\sqrt{\left(xy-1\right)^2}+2xy\)
\(=2\left|xy-1\right|+2xy\)
Áp dụng bđt Cô si
- Nếu thấy \(xy\ge1\Rightarrow A\ge2xy-2+2xy=4xy-2\ge2\)
- Nếu \(xy< 1\Rightarrow A>-2xy+2+2xy=2\)
Vậy : \(A\ge2\left(đpcm\right)\)
Ta có:Xét hiệu \(x^2+y^2+\left(\frac{xy-1}{x-y}\right)^2-2=\left(x-y\right)^2+\left(\frac{xy-1}{x-y}\right)^2+2\left(xy-1\right)\ge0\)
\(=\left(x-y+\frac{xy-1}{x-y}\right)^2\ge0\)
\(\Rightarrow x^2+y^2+\left(\frac{xy-1}{x-y}\right)^2\ge2\left(đpcm\right)\)
\(T=\frac{1}{1+x^2}+\frac{4}{4+y^2}+xy=\frac{y^2+4+4+4x^2}{\left(1+x^2\right)\left(4+y^2\right)}+xy=\frac{y^2+4x^4+4}{\left(1+x^2\right)\left(4+y^2\right)}+xy\)
Áp dụng BĐT Cosi:
\(y^2+4x^2\ge4xy\ge8\)
\(\hept{\begin{cases}x^2+1\ge2x\\y^2+4\ge4y\end{cases}\Rightarrow\left(x^2+1\right)\left(y^2+4\right)\ge8xy\ge16}\)
=> \(\frac{y^2+4x^2+8}{\left(x^2+1\right)\left(y^2+4\right)}\ge\frac{8}{16}=\frac{1}{2}\)
=> \(T\ge\frac{1}{2}+2=\frac{5}{2}\)
\(Min_T=\frac{5}{2}\Leftrightarrow\hept{\begin{cases}y=2x\\xy=2\end{cases}}\) <=> \(\hept{\begin{cases}x=-1\\y=-2\end{cases}}\)hoặc \(\hept{\begin{cases}x=1\\y=2\end{cases}}\)
\(\frac{xy}{z}+\frac{yz}{x}\ge2y\) ; \(\frac{xy}{z}+\frac{zx}{y}\ge2x\); \(\frac{yz}{x}+\frac{zx}{y}\ge2z\)
Cộng vế với vế:
\(2\left(\frac{xy}{z}+\frac{yz}{x}+\frac{zx}{y}\right)\ge2\left(x+y+z\right)\)
Dấu "=" xảy ra khi \(x=y=z\)
ta có \(x+y\ge2\sqrt{xy}=2.\sqrt{1}=2\)
\(\frac{1}{x+y}\le\frac{1}{2}\)
\(\frac{4}{x+y}\le2\)
đề có sai ko vậy