Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Áp dụng BĐT Cô-si cho các số dương ta có:
\(x+\frac{1}{(x-y).y}=(x-y)+y+\frac{1}{(x-y).y}\geq 3\sqrt[3]{(x-y).y.\frac{1}{(x-y).y}}=3\)
Ta có đpcm.
Dấu "=" xảy ra khi \(x-y=y=\frac{1}{(x-y).y}\) hay $x=2; y=1$
Với x,y,z > 0
Xét : (1/x + 1/y + 1/z).(x+y+z)
>=3 \(\sqrt[3]{\frac{1}{xyz}}\). 3\(\sqrt[3]{xyz}\) = 9
=> 1/x + 1/y + 1/z >= 9/x+y+z = 9/1 = 9
=> ĐPCM
Dấu "=" xảy ra <=> x=y=z=1/3
Tk mk nha
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)
\(\Leftrightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)
\(\Leftrightarrow3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)\ge9\)(đúng với a, b, c dương)
Áp dụng BĐT trên ta có:
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}=9\)
Ta có 1+x2+1+y2=2+x2+y2,2/1+xy=2+xy. Do 2=2 nên ta cần so sánh x2+y2 với xy với x,y>=1 và x,y thuộc R.
Già sử x<y thì xy<y2 và y2<x2+y2 nên xy<x2+y2 (1)
Giả sử x>y thì xy<x2và x2<x2+y2nên xy<x2+y2(2)
Giả sử x=y thì xy=x2=y2 và x2<x2+y2 nên xy<x2+y2(3)
Kết hợp 1,2,3 suy ra xy luôn bé hơn x2+y2 . Suy ra đpcm
Áp dụng bđt Cauchy - Schwarz dạng Engel, ta được:
\(\frac{1}{x}+\frac{1}{y}\ge\frac{\left(1+1\right)^2}{x+y}=\frac{4}{x+y}\)
Dấu "=" xảy ra khi \(x=y=\frac{1}{2}\)
Thật ra bài này không cần điều kiện \(x+y\le1\)thì \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)vẫn đúng với x,y dương và x = y.
Mình nghĩ nên chứng minh \(\frac{1}{x}+\frac{1}{y}\ge4\)thì điều kiện \(x+y\le1\) sẽ có nghĩa!
bai thi .....................kho..........................kho..............troi.................thilanh.............................ret..................wa.........................dau................wa......................tich....................ung.....................ho.....................cho............do.................lanh...............tho...................bang..................mom...................thi...................nhu..................hut.....................thuoc................la.................lanh wa
Ta có:
\(\left(\frac{x}{y}+\frac{y}{x}\right)^2=\frac{x^2}{y^2}+2.\frac{x}{y}.\frac{y}{x}+\frac{y^2}{x^2}=\left(\frac{x}{y}-\frac{y}{x}\right)^2+4.\frac{x}{y}.\frac{y}{x}\)
\(=\left(\frac{x}{y}-\frac{y}{x}\right)^2+4\ge4\) với mọi x y >0
Vì x, y >0 => \(\frac{x}{y}+\frac{y}{x}>0\) mà \(\left(\frac{x}{y}+\frac{y}{x}\right)^2\ge4\)
=> \(\frac{x}{y}+\frac{y}{x}\ge2>\frac{1}{2}\)với mọi x, y >0
"=" xảy ra <=> x =y
Em kiểm tra lại đề bài nha.