Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn xem lại đề bài, mặc dù bài này giải được ra kết quả cụ thể, nhưng chắc không ai cho đề như vậy cả
Sau khi tính toán thì \(P_{min}=4+2\sqrt{3}\)
Dấu "=" xảy ra khi \(\left(x;y\right)=\left(\dfrac{3-\sqrt{6\sqrt{3}-9}}{6};\dfrac{3+\sqrt{6\sqrt{3}-9}}{6}\right)\) và hoán vị
Nhìn thật kinh khủng, chẳng có lý gì cả.
Nếu điều kiện \(x+y=1\) thì biểu thức \(P=\dfrac{a}{x^3+y^3}+\dfrac{b}{xy}\) cần có tỉ lệ \(\dfrac{b}{a}\ge3\) để ra 1 kết quả đẹp mắt và bình thường
Ví dụ có thể cho đề là \(P=\dfrac{1}{3\left(x^3+y^3\right)}+\dfrac{1}{xy}\) hoặc \(P=\dfrac{1}{x^3+y^3}+\dfrac{4}{xy}\) gì đó :)
Đặt \(\left(\sqrt[3]{x};\sqrt[3]{y};\sqrt[3]{z}\right)=\left(a;b;c\right)\Rightarrow a^3+b^3+c^3=1\)
\(a^3+a^3+\frac{1}{3}\ge\frac{3a}{\sqrt[3]{3}}a^2=\sqrt[3]{9}a^2\)
Tương tự: \(2b^3+\frac{1}{3}\ge\sqrt[3]{9}b^2\); \(2c^3+\frac{1}{3}\ge\sqrt[3]{9}c^2\)
\(\Rightarrow2\left(a^3+b^3+c^3\right)+1\ge\sqrt[3]{9}\left(a^2+b^2+c^2\right)\)
\(\Rightarrow a^2+b^2+c^2\le\frac{3}{\sqrt[3]{9}}=\sqrt[3]{3}\)
\(P=ab+bc+ca\le a^2+b^2+c^2\le\sqrt[3]{3}\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{\sqrt[3]{3}}\) hay \(x=y=z=\frac{1}{3}\)
Cái bài này bình thường :v
Đặt \(A=\dfrac{x^3}{y^3+8}+\dfrac{y^3}{z^3+8}+\dfrac{z^3}{x^3+8}\)
\(BDT\Leftrightarrow\dfrac{x^3}{y^3+8}+\dfrac{y^3}{z^3+8}+\dfrac{z^3}{x^3+8}-\dfrac{2}{27}\left(xy+yz+xz\right)\ge\dfrac{1}{9}\)
Áp dụng BĐT AM-GM ta có:
\(\dfrac{x^3}{y^3+8}+\dfrac{y+2}{27}+\dfrac{y^2-2y+4}{27}\)
\(\ge3\sqrt[3]{\dfrac{x^3}{y^3+8}\cdot\dfrac{y+2}{27}\cdot\dfrac{y^2-2y+4}{27}}=\dfrac{x}{3}\)
Tương tự cho 2 BĐT còn lại cũng có:
\(\dfrac{y^3}{z^3+8}+\dfrac{z+2}{27}+\dfrac{z^2-2z+4}{27}\ge\dfrac{y}{3};\dfrac{z^3}{x^3+8}+\dfrac{x+2}{27}+\dfrac{x^2-2x+4}{27}\ge\dfrac{z}{3}\)
Cộng theo vế 3 BĐT trên ta có:
\(A+\dfrac{x+y+z+6}{27}+\dfrac{x^2+y^2+z^2-2\left(x+y+z\right)+12}{27}\ge\dfrac{x+y+z}{3}\)
\(\Leftrightarrow A+\dfrac{9}{27}+\dfrac{\dfrac{\left(x+y+z\right)^2}{3}+6}{27}\ge1\)\(\Leftrightarrow A\ge\dfrac{1}{3}\)
Cần chứng minh \(VT=A-\dfrac{2}{27}\left(xy+yz+xz\right)\ge\dfrac{1}{9}=VP\)
\(\Leftrightarrow VT=\dfrac{1}{3}-\dfrac{2\cdot\dfrac{\left(x+y+z\right)^2}{3}}{27}=\dfrac{1}{9}=VP\) (đúng)
Xảy ra khi \(x=y=z=1\)
P/s:Trình bày hơi khó hiểu, thông cảm :v
\(A=\frac{1}{\sqrt{x^2-xy+y^2}}+\frac{1}{\sqrt{y^2-yz+z^2}}+\frac{1}{\sqrt{z^2-zx+x^2}}\)
\(=\frac{1}{\sqrt{\frac{1}{2}\left(x-y\right)^2+\frac{1}{2}\left(x^2+y^2\right)}}+\frac{1}{\sqrt{\frac{1}{2}\left(y-z\right)^2+\frac{1}{2}\left(y^2+z^2\right)}}+\frac{1}{\sqrt{\frac{1}{2}\left(z-x\right)^2+\frac{1}{2}\left(z^2+x^2\right)}}\)
\(\le\frac{1}{\sqrt{\frac{1}{2}\left(x^2+y^2\right)}}+\frac{1}{\sqrt{\frac{1}{2}\left(y^2+z^2\right)}}+\frac{1}{\sqrt{\frac{1}{2}\left(z^2+x^2\right)}}\)
\(\le\frac{2}{x+y}+\frac{2}{y+z}+\frac{2}{z+x}\le\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)